論文の概要: Imbalanced Classification via a Tabular Translation GAN
- arxiv url: http://arxiv.org/abs/2204.08683v1
- Date: Tue, 19 Apr 2022 06:02:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-20 22:44:07.452669
- Title: Imbalanced Classification via a Tabular Translation GAN
- Title(参考訳): 語彙翻訳GANによる不均衡分類
- Authors: Jonathan Gradstein, Moshe Salhov, Yoav Tulpan, Ofir Lindenbaum, Amir
Averbuch
- Abstract要約: 本稿では,多数のサンプルを対応する合成マイノリティ標本にマッピングするために,新たな正規化損失を用いたジェネレーティブ・アドバイサル・ネットワークに基づくモデルを提案する。
提案手法は, 再加重法やオーバーサンプリング法と比較して, 平均精度を向上することを示す。
- 参考スコア(独自算出の注目度): 4.864819846886142
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When presented with a binary classification problem where the data exhibits
severe class imbalance, most standard predictive methods may fail to accurately
model the minority class. We present a model based on Generative Adversarial
Networks which uses additional regularization losses to map majority samples to
corresponding synthetic minority samples. This translation mechanism encourages
the synthesized samples to be close to the class boundary. Furthermore, we
explore a selection criterion to retain the most useful of the synthesized
samples. Experimental results using several downstream classifiers on a variety
of tabular class-imbalanced datasets show that the proposed method improves
average precision when compared to alternative re-weighting and oversampling
techniques.
- Abstract(参考訳): データが厳密なクラス不均衡を示す二項分類問題を示すと、ほとんどの標準的な予測手法はマイノリティクラスを正確にモデル化することができない。
本稿では,多数のサンプルを対応する合成マイノリティ標本にマッピングするために,新たな正規化損失を用いたジェネレーティブ・アドバイサル・ネットワークに基づくモデルを提案する。
この翻訳機構は、合成されたサンプルがクラス境界に近いように促す。
さらに, 合成試料の最も有用性を維持するために, 選択基準を検討する。
様々な表型クラス不均衡データセットの下流分類器を用いた実験結果から, 提案手法は, 代替的な再重み付けやオーバーサンプリング手法と比較して平均精度を向上することが示された。
関連論文リスト
- Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Does Adversarial Oversampling Help us? [10.210871872870737]
本稿では,データセットのクラス不均衡を処理するために,3人のプレイヤーによるゲームベースのエンドツーエンド手法を提案する。
本稿では,敵対的マイノリティ・オーバーサンプリングではなく,敵対的オーバーサンプリング (AO) とデータ空間・オーバーサンプリング (DO) のアプローチを提案する。
提案手法の有効性を高次元・高不均衡・大規模マルチクラスデータセットを用いて検証した。
論文 参考訳(メタデータ) (2021-08-20T05:43:17Z) - A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios [23.257891827728827]
異なるクラスに属するトレーニングサンプルの割合の不均衡は、しばしば従来の分類器の性能低下を引き起こす。
不均衡なデータに対処する新しい3ステップ手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T09:58:02Z) - Weakly Supervised-Based Oversampling for High Imbalance and High
Dimensionality Data Classification [2.9283685972609494]
オーバーサンプリングは、不均衡な分類を解決する効果的な方法である。
合成サンプルの不正確なラベルは、データセットの分布を歪ませる。
本稿では,合成試料の不正確なラベル付けを扱うために,弱教師付き学習を導入する。
論文 参考訳(メタデータ) (2020-09-29T15:26:34Z) - Conditional Wasserstein GAN-based Oversampling of Tabular Data for
Imbalanced Learning [10.051309746913512]
本稿では,条件付きWasserstein GANに基づくオーバーサンプリング手法を提案する。
実世界の7つのデータセット上で,標準的なオーバーサンプリング手法と不均衡なベースラインに対して,本手法をベンチマークした。
論文 参考訳(メタデータ) (2020-08-20T20:33:56Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
判別分析フレームワーク内での大きなサンプルサイズに起因する計算問題を考察する。
線形および二次判別分析のためのトレーニングサンプル数を削減するための新しい圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T05:09:08Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。