論文の概要: Universal Representation Learning from Multiple Domains for Few-shot
Classification
- arxiv url: http://arxiv.org/abs/2103.13841v1
- Date: Thu, 25 Mar 2021 13:49:12 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:37:12.951299
- Title: Universal Representation Learning from Multiple Domains for Few-shot
Classification
- Title(参考訳): ファウショット分類のための複数領域からの普遍表現学習
- Authors: Wei-Hong Li, Xialei Liu, Hakan Bilen
- Abstract要約: 複数の個別に訓練されたネットワークの知識を蒸留し,一組の普遍的な深層表現を学習することを提案する。
より効率的な適応ステップにより、未確認領域に対する普遍表現をさらに洗練できることが示される。
- 参考スコア(独自算出の注目度): 41.821234589075445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we look at the problem of few-shot classification that aims to
learn a classifier for previously unseen classes and domains from few labeled
samples. Recent methods use adaptation networks for aligning their features to
new domains or select the relevant features from multiple domain-specific
feature extractors. In this work, we propose to learn a single set of universal
deep representations by distilling knowledge of multiple separately trained
networks after co-aligning their features with the help of adapters and
centered kernel alignment. We show that the universal representations can be
further refined for previously unseen domains by an efficient adaptation step
in a similar spirit to distance learning methods. We rigorously evaluate our
model in the recent Meta-Dataset benchmark and demonstrate that it
significantly outperforms the previous methods while being more efficient. Our
code will be available at https://github.com/VICO-UoE/URL.
- Abstract(参考訳): 本稿では,ラベル付きサンプルから未発見のクラスとドメインの分類法を学ぶことを目的とした,マイトショット分類の問題点について考察する。
近年の手法では,特徴を新しいドメインにアライメントしたり,複数のドメイン固有の特徴抽出器から関連する特徴を選択できる。
本研究では,アダプタとカーネルアライメントの助けを借りて,複数の個別に訓練されたネットワークの知識を抽出し,一組の普遍的な深層表現を学習することを提案する。
距離学習法に類似した手法を用いて, 従来見ていなかった領域に対する普遍表現をさらに洗練することができることを示す。
最近のMeta-Datasetベンチマークで、我々のモデルを厳格に評価し、より効率的でありながら、以前の手法よりも大幅に優れていることを示した。
私たちのコードはhttps://github.com/VICO-UoE/URLで公開されます。
関連論文リスト
- CDFSL-V: Cross-Domain Few-Shot Learning for Videos [58.37446811360741]
ビデオのアクション認識は、いくつかのラベル付き例でのみ、新しいカテゴリを認識するための効果的なアプローチである。
既存のビデオアクション認識の方法は、同じドメインからの大きなラベル付きデータセットに依存している。
本稿では,自己教師付き学習とカリキュラム学習を活用した,クロスドメインな数ショットビデオ行動認識手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T19:44:27Z) - Multi-Domain Long-Tailed Learning by Augmenting Disentangled
Representations [80.76164484820818]
多くの現実世界の分類問題には、避けられない長い尾のクラスバランスの問題がある。
本稿では,この多領域長鎖学習問題について検討し,すべてのクラスとドメインにまたがってよく一般化されたモデルを作成することを目的とする。
TALLYは、選択的均衡サンプリング戦略に基づいて、ある例のセマンティック表現と別の例のドメイン関連ニュアンスを混合することでこれを達成している。
論文 参考訳(メタデータ) (2022-10-25T21:54:26Z) - Adversarial Feature Augmentation for Cross-domain Few-shot
Classification [2.68796389443975]
本稿では, ドメインギャップを補うために, 対角的特徴拡張法(AFA)を提案する。
提案手法はプラグイン・アンド・プレイモジュールであり,既存の数発学習手法に容易に組み込むことができる。
論文 参考訳(メタデータ) (2022-08-23T15:10:22Z) - Style Interleaved Learning for Generalizable Person Re-identification [69.03539634477637]
DG ReIDトレーニングのための新しいスタイルインターリーブラーニング(IL)フレームワークを提案する。
従来の学習戦略とは異なり、ILには2つの前方伝播と1つの後方伝播が組み込まれている。
我々のモデルはDG ReIDの大規模ベンチマークにおいて最先端の手法を一貫して上回ることを示す。
論文 参考訳(メタデータ) (2022-07-07T07:41:32Z) - Few-Shot Classification in Unseen Domains by Episodic Meta-Learning
Across Visual Domains [36.98387822136687]
興味のあるカテゴリのラベル付き例がほとんどないため、いくつかのショット分類は、分類を実行することを目的としている。
本稿では,ドメイン一般化型少ショット分類のための一意学習フレームワークを提案する。
メタ学習戦略を進めることで、学習フレームワークは複数のソースドメインにまたがるデータを利用して、ドメイン不変の機能をキャプチャします。
論文 参考訳(メタデータ) (2021-12-27T06:54:11Z) - Improving Task Adaptation for Cross-domain Few-shot Learning [41.821234589075445]
クロスドメインの少ショット分類は、ラベル付きサンプルがほとんどない未確認のクラスやドメインから分類器を学ぶことを目的としている。
残余接続を有する畳み込み層に付着したパラメトリックアダプタが最良であることを示す。
論文 参考訳(メタデータ) (2021-07-01T10:47:06Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
対照的な自己教師型学習は、セグメンテーションやオブジェクト検出といった多くの下流タスクにおいて教師付き事前訓練よりも優れています。
本稿では,データセットのバイアスが既存手法にどのように影響するかを最初に検討する。
現在のコントラストアプローチは、(i)オブジェクト中心対シーン中心、(ii)一様対ロングテール、(iii)一般対ドメイン固有データセットなど、驚くほどうまく機能することを示す。
論文 参考訳(メタデータ) (2021-06-10T17:59:13Z) - A Universal Representation Transformer Layer for Few-Shot Image
Classification [43.31379752656756]
少ないショット分類は、少数のサンプルで示される場合、目に見えないクラスを認識することを目的としている。
本稿では,多様なデータソースから未確認のクラスやサンプルを抽出するマルチドメイン・少数ショット画像分類の問題点について考察する。
そこで本研究では,メタ学習者がユニバーサルな特徴を活用できるユニバーサル表現変換器層を提案する。
論文 参考訳(メタデータ) (2020-06-21T03:08:00Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。