論文の概要: Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification
- arxiv url: http://arxiv.org/abs/2003.09338v2
- Date: Mon, 20 Jul 2020 12:51:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-21 22:42:46.454607
- Title: Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification
- Title(参考訳): ファウショット分類のための多領域表現からの関連特徴の選択
- Authors: Nikita Dvornik, Cordelia Schmid, Julien Mairal
- Abstract要約: 本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
- 参考スコア(独自算出の注目度): 91.67977602992657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Popular approaches for few-shot classification consist of first learning a
generic data representation based on a large annotated dataset, before adapting
the representation to new classes given only a few labeled samples. In this
work, we propose a new strategy based on feature selection, which is both
simpler and more effective than previous feature adaptation approaches. First,
we obtain a multi-domain representation by training a set of semantically
different feature extractors. Then, given a few-shot learning task, we use our
multi-domain feature bank to automatically select the most relevant
representations. We show that a simple non-parametric classifier built on top
of such features produces high accuracy and generalizes to domains never seen
during training, which leads to state-of-the-art results on MetaDataset and
improved accuracy on mini-ImageNet.
- Abstract(参考訳): 少数ショット分類の一般的なアプローチは、まず大きな注釈付きデータセットに基づいてジェネリックデータ表現を学習し、その後にラベル付きサンプルが与えられた新しいクラスに表現を適用する。
本研究では,従来の機能適応アプローチよりもシンプルで効果的である特徴選択に基づく新しい戦略を提案する。
まず、意味的に異なる特徴抽出器の集合を訓練することにより、多領域表現を得る。
そして、数ショットの学習タスクから、最も関連性の高い表現を自動的に選択するために、マルチドメイン機能バンクを使用します。
このような機能の上に構築された単純な非パラメトリック分類器は、トレーニング中に見られない領域に高い精度で一般化し、MetaDatasetの最先端結果とmini-ImageNetの精度の向上をもたらすことを示す。
関連論文リスト
- Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Disambiguation of One-Shot Visual Classification Tasks: A Simplex-Based
Approach [8.436437583394998]
本稿では,複数の物体の存在を検出するための戦略を提案する。
この戦略は、高次元空間における単純体の角を識別することに基づいている。
提案手法は,極端設定における精度をわずかながら統計的に向上させる能力を示す。
論文 参考訳(メタデータ) (2023-01-16T11:37:05Z) - A Study on Representation Transfer for Few-Shot Learning [5.717951523323085]
ほとんどショットの分類は、いくつかのラベル付き例を使って、新しいオブジェクトカテゴリを適切に分類することを目的としていない。
本研究では, 様々な特徴表現の体系的研究を行い, 数発の分類を行う。
より複雑なタスクからの学習は、数ショットの分類においてより良い表現を与える傾向にある。
論文 参考訳(メタデータ) (2022-09-05T17:56:02Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Hierarchical Variational Memory for Few-shot Learning Across Domains [120.87679627651153]
本稿では,プロトタイプの各レベルが階層メモリから対応する情報を取得する階層型プロトタイプモデルを提案する。
このモデルには、ドメインシフトの状況が要求される場合、異なるセマンティックレベルの機能を柔軟に依存する能力が備わっている。
モデルにおける各コンポーネントの有効性を示すために、徹底的なアブレーション研究を行っている。
論文 参考訳(メタデータ) (2021-12-15T15:01:29Z) - Multi-dataset Pretraining: A Unified Model for Semantic Segmentation [97.61605021985062]
我々は、異なるデータセットの断片化アノテーションを最大限に活用するために、マルチデータセット事前訓練と呼ばれる統合フレームワークを提案する。
これは、複数のデータセットに対して提案されたピクセルからプロトタイプへのコントラスト損失を通じてネットワークを事前トレーニングすることで実現される。
異なるデータセットからの画像とクラス間の関係をより良くモデル化するために、クロスデータセットの混合によりピクセルレベルの埋め込みを拡張する。
論文 参考訳(メタデータ) (2021-06-08T06:13:11Z) - Universal Representation Learning from Multiple Domains for Few-shot
Classification [41.821234589075445]
複数の個別に訓練されたネットワークの知識を蒸留し,一組の普遍的な深層表現を学習することを提案する。
より効率的な適応ステップにより、未確認領域に対する普遍表現をさらに洗練できることが示される。
論文 参考訳(メタデータ) (2021-03-25T13:49:12Z) - Meta Learning for Few-Shot One-class Classification [0.0]
メタ学習問題として,一級分類における意味のある特徴の学習を定式化する。
これらの表現を学習するには、類似したタスクからのマルチクラスデータのみが必要である。
数ショットの分類データセットを、数ショットの1クラスの分類シナリオに適応させることで、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-09-11T11:35:28Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
ごく少数の参照サンプルに基づいて,クエリサンプル表現を最適化し,高速に適応する新しい数ショット学習手法を提案する。
実験で実証したように,提案モデルでは,様々なベンチマーク数ショット分類と微粒化認識データセットを用いて,最先端の分類結果を達成している。
論文 参考訳(メタデータ) (2020-08-06T05:52:59Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
画像中のオブジェクトに逐次出席するクラスアテンション機構を導入し,それらの特徴を抽出する。
提案手法は点レベルのアノテーションに基づいて訓練され,モデルのクラス依存的・クラス依存的側面を乱す新しい損失関数を用いる。
本稿では,FSODやMS COCOなど,さまざまなオブジェクトカウント/検出データセットについて報告する。
論文 参考訳(メタデータ) (2020-07-03T18:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。