論文の概要: Multi-Target Domain Adaptation via Unsupervised Domain Classification
for Weather Invariant Object Detection
- arxiv url: http://arxiv.org/abs/2103.13970v1
- Date: Thu, 25 Mar 2021 16:59:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-26 13:35:11.480678
- Title: Multi-Target Domain Adaptation via Unsupervised Domain Classification
for Weather Invariant Object Detection
- Title(参考訳): 気象不変物体検出のための教師なし領域分類によるマルチターゲット領域適応
- Authors: Ting Sun and Jinlin Chen and Francis Ng
- Abstract要約: トレーニング画像の天候がテスト画像と異なる場合、オブジェクト検出器の性能は著しく低下する。
マルチターゲットドメインへの単一ターゲットドメイン適応手法の一般化に使用できる新しい教師なしドメイン分類法を提案する。
本研究では,Cityscapesデータセットとその合成変種について実験を行った。
霧、雨、夜。
- 参考スコア(独自算出の注目度): 1.773576418078547
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Object detection is an essential technique for autonomous driving. The
performance of an object detector significantly degrades if the weather of the
training images is different from that of test images. Domain adaptation can be
used to address the domain shift problem so as to improve the robustness of an
object detector. However, most existing domain adaptation methods either handle
single target domain or require domain labels. We propose a novel unsupervised
domain classification method which can be used to generalize single-target
domain adaptation methods to multi-target domains, and design a
weather-invariant object detector training framework based on it. We conduct
the experiments on Cityscapes dataset and its synthetic variants, i.e. foggy,
rainy, and night. The experimental results show that the object detector
trained by our proposed method realizes robust object detection under different
weather conditions.
- Abstract(参考訳): 物体検出は自動運転に不可欠な技術である。
被検体検出器の性能は、訓練画像の天候が試験画像と異なる場合、著しく低下する。
ドメイン適応は、オブジェクト検出器のロバスト性を改善するために、ドメインシフト問題に対処するために使用できる。
しかし、既存のドメイン適応メソッドのほとんどは単一のターゲットドメインを扱うか、ドメインラベルを必要とする。
本稿では,マルチターゲットドメインへの単一ターゲットドメイン適応手法の一般化と,それに基づく気象不変物体検出訓練フレームワークの設計に使用可能な,教師なし領域分類手法を提案する。
本研究では,Cityscapesデータセットとその合成変種について実験を行った。
霧、雨、夜。
実験の結果,提案手法で学習した物体検出器は,異なる気象条件下で頑健な物体検出を実現することがわかった。
関連論文リスト
- Source-free Domain Adaptive Object Detection in Remote Sensing Images [11.19538606490404]
本研究では,RS画像のソースフリーオブジェクト検出(SFOD)設定を提案する。
これは、ソース事前学習モデルのみを使用してターゲットドメイン適応を実行することを目的としている。
本手法では,ソース領域RS画像へのアクセスは不要である。
論文 参考訳(メタデータ) (2024-01-31T15:32:44Z) - Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
臨床応用においては、トレーニング画像(ソース領域)とテスト画像(ターゲット領域)が異なる分布下にある場合、ドメインシフトは一般的な問題である。
本稿では,Few-Shot Unsupervised Domain Adaptation (FSUDA) の新たな手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T16:02:01Z) - Domain Adaptation based Object Detection for Autonomous Driving in Foggy and Rainy Weather [44.711384869027775]
ドメインギャップのため、晴れた天候下で訓練された検出モデルは、霧や雨の条件下ではうまく機能しない可能性がある。
霧や雨の天候下での領域ギャップを埋め、オブジェクト検出の性能を向上させるため、ドメイン適応型オブジェクト検出のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T23:06:47Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
単一ドメインの一般化(Single Domain Generalization)は、単一のソースドメイン上でモデルをトレーニングすることで、目に見えないターゲットドメインに一般化する問題に取り組む。
本稿では、事前学習された視覚言語モデルを用いて、テキストプロンプトを介して意味領域の概念を導入することを提案する。
本手法は,検出器のバックボーンから抽出した特徴に作用する意味的拡張戦略と,テキストに基づく分類損失によって実現される。
論文 参考訳(メタデータ) (2023-01-13T12:01:18Z) - Domain Adaptive Object Detection for Autonomous Driving under Foggy
Weather [25.964194141706923]
本稿では,霧気候下での自律走行のための新しい領域適応型物体検出フレームワークを提案する。
本手法は画像レベルの適応とオブジェクトレベルの適応を両立させ,画像スタイルとオブジェクトの外観における領域差を低減させる。
評価実験の結果,提案手法の有効性と精度が示された。
論文 参考訳(メタデータ) (2022-10-27T05:09:10Z) - Decoupled Adaptation for Cross-Domain Object Detection [69.5852335091519]
クロスドメインオブジェクト検出は、オブジェクト分類よりも難しい。
D-adaptは4つのクロスドメインオブジェクト検出タスクで最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-10-06T08:43:59Z) - Domain Adaptive YOLO for One-Stage Cross-Domain Detection [4.596221278839825]
ドメイン適応型YOLO (DA-YOLO) は1段検出器のクロスドメイン性能を向上させるために提案される。
提案手法を,Cityscapes,KITTI,SIM10Kなどの一般的なデータセット上で評価する。
論文 参考訳(メタデータ) (2021-06-26T04:17:42Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Unsupervised Out-of-Domain Detection via Pre-trained Transformers [56.689635664358256]
ドメイン外の入力は予測不能なアウトプットを引き起こし、時には破滅的な安全性の問題を引き起こす。
本研究は、教師なしのドメイン内データのみを用いて、ドメイン外サンプルを検出する問題に対処する。
検出精度を高めるために、ドメイン固有の2つの微調整手法が提案されている。
論文 参考訳(メタデータ) (2021-06-02T05:21:25Z) - Robust Object Detection via Instance-Level Temporal Cycle Confusion [89.1027433760578]
物体検出器の分布外一般化を改善するための補助的自己監視タスクの有効性を検討する。
最大エントロピーの原理に触発されて,新しい自己監督タスクであるインスタンスレベル時間サイクル混乱(cycconf)を導入する。
それぞれのオブジェクトに対して、タスクは、ビデオ内の隣接するフレームで最も異なるオブジェクトの提案を見つけ、自己スーパービジョンのために自分自身にサイクルバックすることです。
論文 参考訳(メタデータ) (2021-04-16T21:35:08Z) - Single-Stage Object Detection from Top-View Grid Maps on Custom Sensor
Setups [3.751342183022128]
本稿では,自動走行シナリオにおけるトップビューグリッドマップ上の単段物体検出のための教師なし領域適応手法を提案する。
提案手法を適用すれば,未ラベル領域のオブジェクト検出精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-02-03T12:05:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。