論文の概要: Domain Adaptive Object Detection for Autonomous Driving under Foggy
Weather
- arxiv url: http://arxiv.org/abs/2210.15176v1
- Date: Thu, 27 Oct 2022 05:09:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-28 14:31:59.828434
- Title: Domain Adaptive Object Detection for Autonomous Driving under Foggy
Weather
- Title(参考訳): 霧の天候下における自律運転のためのドメイン適応物体検出
- Authors: Jinlong Li, Runsheng Xu, Jin Ma, Qin Zou, Jiaqi Ma, Hongkai Yu
- Abstract要約: 本稿では,霧気候下での自律走行のための新しい領域適応型物体検出フレームワークを提案する。
本手法は画像レベルの適応とオブジェクトレベルの適応を両立させ,画像スタイルとオブジェクトの外観における領域差を低減させる。
評価実験の結果,提案手法の有効性と精度が示された。
- 参考スコア(独自算出の注目度): 25.964194141706923
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most object detection methods for autonomous driving usually assume a
consistent feature distribution between training and testing data, which is not
always the case when weathers differ significantly. The object detection model
trained under clear weather might not be effective enough in foggy weather
because of the domain gap. This paper proposes a novel domain adaptive object
detection framework for autonomous driving under foggy weather. Our method
leverages both image-level and object-level adaptation to diminish the domain
discrepancy in image style and object appearance. To further enhance the
model's capabilities under challenging samples, we also come up with a new
adversarial gradient reversal layer to perform adversarial mining for the hard
examples together with domain adaptation. Moreover, we propose to generate an
auxiliary domain by data augmentation to enforce a new domain-level metric
regularization. Experimental results on public benchmarks show the
effectiveness and accuracy of the proposed method. The code is available at
https://github.com/jinlong17/DA-Detect.
- Abstract(参考訳): 自律運転のためのほとんどの物体検出方法は、通常、トレーニングデータとテストデータの間に一貫した特徴分布を仮定する。
晴れた天候下で訓練された物体検出モデルは、領域ギャップのため霧の天候に十分な効果が得られない可能性がある。
本稿では,霧気候下での自律走行のための領域適応型物体検出フレームワークを提案する。
本手法は画像レベルの適応とオブジェクトレベルの適応を両立させ,画像スタイルとオブジェクトの外観における領域差を低減させる。
挑戦的なサンプルの下でモデルの能力をさらに高めるために、我々はさらに新しい逆勾配反転層を考案し、ハードサンプルに対する逆方向のマイニングとドメイン適応を同時に行う。
さらに,新たな領域レベルの計量正規化を実施するために,データ拡張による補助ドメインの生成を提案する。
公開ベンチマーク実験の結果,提案手法の有効性と精度が示された。
コードはhttps://github.com/jinlong17/da-detectで入手できる。
関連論文リスト
- Weakly Supervised Test-Time Domain Adaptation for Object Detection [23.89166024655107]
監視などの応用では、通常は人間のオペレーターがシステムの操作を監督する。
完全自動適応により達成可能な範囲を超えて、オブジェクト検出の性能を高めるために、テスト時間領域適応に演算子を関与させることを提案する。
提案手法は既存の手法よりも優れており, ループ内テスト時間領域適応の優れた利点を示す。
論文 参考訳(メタデータ) (2024-07-08T04:44:42Z) - Enhancing Lidar-based Object Detection in Adverse Weather using Offset
Sequences in Time [1.1725016312484975]
ライダーによる物体検出は、雨や霧などの悪天候の影響を著しく受けている。
本研究は,ライダーによる物体検出の信頼性に対する悪天候の影響を緩和する有効な方法の総合的研究である。
論文 参考訳(メタデータ) (2024-01-17T08:31:58Z) - DARTH: Holistic Test-time Adaptation for Multiple Object Tracking [87.72019733473562]
複数物体追跡(MOT)は、自律運転における知覚システムの基本的構成要素である。
運転システムの安全性の追求にもかかわらず、テスト時間条件における領域シフトに対するMOT適応問題に対する解決策は提案されていない。
我々はMOTの総合的なテスト時間適応フレームワークであるDARTHを紹介する。
論文 参考訳(メタデータ) (2023-10-03T10:10:42Z) - DA-RAW: Domain Adaptive Object Detection for Real-World Adverse Weather Conditions [2.048226951354646]
悪天候下での物体検出のための教師なし領域適応フレームワークを提案する。
提案手法は,高次特徴のスタイル関連情報に集中することで,スタイルギャップを解消する。
自己教師付きコントラスト学習を用いて、我々のフレームワークは、気象のギャップを減らし、気象汚染に対して堅牢な事例特徴を取得する。
論文 参考訳(メタデータ) (2023-09-15T04:37:28Z) - Domain Adaptation based Object Detection for Autonomous Driving in Foggy and Rainy Weather [44.711384869027775]
ドメインギャップのため、晴れた天候下で訓練された検出モデルは、霧や雨の条件下ではうまく機能しない可能性がある。
霧や雨の天候下での領域ギャップを埋め、オブジェクト検出の性能を向上させるため、ドメイン適応型オブジェクト検出のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T23:06:47Z) - Unsupervised Foggy Scene Understanding via Self Spatial-Temporal Label
Diffusion [51.11295961195151]
運転シーンの霧画像列の特徴を利用して、自信ある擬似ラベルを密度化する。
局所的な空間的類似性と逐次画像データの隣接時間対応の2つの発見に基づいて,新たなターゲット・ドメイン駆動擬似ラベル拡散方式を提案する。
本手法は,2つの天然霧のデータセット上で51.92%,53.84%の平均交叉結合(mIoU)を達成するのに有効である。
論文 参考訳(メタデータ) (2022-06-10T05:16:50Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
ドメイン適応プロセス中に関心のある小さなオブジェクトの情報を保存するために,事前の意味分類を用いたサイクガンに基づくbevドメイン適応法を提案する。
生成したBEVの品質は,KITTI 3D Object Detection Benchmarkの最先端3Dオブジェクト検出フレームワークを用いて評価されている。
論文 参考訳(メタデータ) (2021-04-22T12:47:37Z) - Multi-Target Domain Adaptation via Unsupervised Domain Classification
for Weather Invariant Object Detection [1.773576418078547]
トレーニング画像の天候がテスト画像と異なる場合、オブジェクト検出器の性能は著しく低下する。
マルチターゲットドメインへの単一ターゲットドメイン適応手法の一般化に使用できる新しい教師なしドメイン分類法を提案する。
本研究では,Cityscapesデータセットとその合成変種について実験を行った。
霧、雨、夜。
論文 参考訳(メタデータ) (2021-03-25T16:59:35Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S時間動作の局所化はコンピュータビジョンにおいて重要な問題である。
本稿では、エンドツーエンドの教師なしドメイン適応アルゴリズムを提案する。
空間的特徴と時間的特徴を別々にあるいは共同的に適応した場合に,顕著な性能向上が達成できることを示す。
論文 参考訳(メタデータ) (2020-10-19T04:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。