16-Element Superconducting Nanowire Single-Photon Detector for Gigahertz
Counting at 1550-nm
- URL: http://arxiv.org/abs/2103.14086v1
- Date: Thu, 25 Mar 2021 19:01:43 GMT
- Title: 16-Element Superconducting Nanowire Single-Photon Detector for Gigahertz
Counting at 1550-nm
- Authors: Timothy. M. Rambo and Amy R. Conover and Aaron J. Miller
- Abstract summary: We present a linearly arrayed, 16-element, superconducting nanowire single-photon detector with 83.4$%$ system detection efficiency at 1550 nm.
This device was designed and fabricated in an existing scalable commercial process.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a linearly arrayed, 16-element, superconducting nanowire
single-photon detector with 83.4$\%$ system detection efficiency at 1550 nm and
a mean per-element dead-time of 9.6-ns, enabling counting at 1 giga-count per
second with $>50\%$ System Detection Efficiency. This device was designed and
fabricated in an existing scalable commercial process.
Related papers
- Design and simulation of a transmon qubit chip for Axion detection [103.69390312201169]
Device based on superconducting qubits has been successfully applied in detecting few-GHz single photons via Quantum Non-Demolition measurement (QND)
In this study, we present Qub-IT's status towards the realization of its first superconducting qubit device.
arXiv Detail & Related papers (2023-10-08T17:11:42Z) - A diamond nanophotonic interface with an optically accessible
deterministic electronuclear spin register [44.62475518267084]
We present a fibre-packaged nanophotonic diamond waveguide hosting a tin-vacancy centre with a spin-1/2 $117$Sn nucleus.
The interaction between the electronic and nuclear spins results in a signature 452(4) MHz hyperfine splitting.
This exceeds the natural optical linewidth by a factor of 16, enabling direct optical nuclear-spin initialisation.
We demonstrate a spin-gated single-photon nonlinearity with 11(1)% contrast in the absence of an external magnetic field.
arXiv Detail & Related papers (2023-05-30T10:30:07Z) - Optimal Amplitude Multiplexing of a Series of Superconducting Nanowire
Single Photon Detectors [58.720142291102135]
Integrated arrays of Superconducting Nanowire Single Photon Detectors (SNSPDs) have shown capabilities such as Photon Number Resolution, single photon imaging and coincidences detection.
The growing complexity of such applications requires the use of multiplexing schemes for the simultaneous readout of different detectors.
A simple multiplexing scheme can be realized by arranging a series of SNSPDs elements, shunted by appropriate resistances.
arXiv Detail & Related papers (2023-03-14T15:57:17Z) - A highly-sensitive broadband superconducting thermoelectric
single-photon detector [62.997667081978825]
A thermoelectric detector (TED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage.
Our TED is able to reveal single-photons of frequency ranging from about 15 GHz to about 150 PHz depending on the chosen design and materials.
arXiv Detail & Related papers (2023-02-06T17:08:36Z) - High-speed detection of 1550 nm single photons with superconducting
nanowire detectors [0.0]
detector for single 1550 nm photons with up to 78% detection efficiency.
World-leading maximum count rate of 1.5 giga-counts/s at 3 dB compression.
arXiv Detail & Related papers (2022-10-21T00:10:35Z) - High quality entanglement distribution through telecommunication fiber
using near-infrared non-degenerate photon pairs [73.4643018649031]
In urban environments, the quantum channel in the form of telecommunication optical fiber (confirming to ITU G.652D standards) are available.
We investigate the possibility that for campus-type communications, entangled photons prepared in the Near-Infrared Range (NIR) can be transmitted successfully.
arXiv Detail & Related papers (2022-09-09T03:23:11Z) - Broadband polarization insensitivity and high detection efficiency in
high-fill-factor superconducting microwire single-photon detectors [0.0]
Single-photon detection via absorption in nanoscale superconducting structures has become a preferred technology in quantum optics.
This work demonstrates simultaneous low-polarization sensitivity ($1.02pm 0.008$) and high detection efficiency ($> 91.8%$ with $67%$ confidence at $2times105$ counts per second) across a $40$ nm bandwidth.
arXiv Detail & Related papers (2022-02-12T00:28:58Z) - Photon detection probability prediction using one-dimensional generative
neural network [62.997667081978825]
We propose a one-dimensional generative model which efficiently generates features using an OuterProduct-layer.
This model bypasses photon transport simulation and predicts the number of photons detected by particular photon detectors at the same level of detail as theGeant4simulation.
This generative model can be used to quickly predict photon detection probability in huge liquid argon detectors like ProtoDUNE or DUNE.
arXiv Detail & Related papers (2021-09-11T01:43:12Z) - A 16-channel fiber array-coupled superconducting single-photon detector
array with average system detection efficiency over 60% at telecom wavelength [9.77574317160143]
We report a compact, scalable, and high-performance superconducting nanowire single-photon detector (SNSPD) array.
For single pixels with an active area of 18 um in diameter and illuminated at the telecom wavelength of 1550 nm, we achieved a pixel yield of 13/16 on one chip.
arXiv Detail & Related papers (2020-12-29T02:43:37Z) - Detecting Infrared Single Photons with Near-Unity System Detection
Efficiency [0.0]
Single photon detectors are indispensable tools in optics, from fundamental measurements to quantum information processing.
We show novel superconducting nanowire single photon detectors fabricated on membranes with 94-99.5 (plus minus 2.07%) system detection efficiency.
We discuss the prime challenges in optical design, device fabrication as well as accurate and reliable detection efficiency measurements to achieve high performance single-photon detection.
arXiv Detail & Related papers (2020-11-17T20:56:39Z) - A platform for high performance photon correlation measurements [0.7304210891832584]
Single-photon detectors combining high efficiency and high time resolution are pivotal in such experiments.
We fabricated devices demonstrating superior performance over all previously reported detectors.
The use of thicker films allowed us to fabricate large-area multi-pixel devices with homogeneous pixel performance.
arXiv Detail & Related papers (2020-03-22T15:00:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.