論文の概要: MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes
- arxiv url: http://arxiv.org/abs/2103.14211v1
- Date: Fri, 26 Mar 2021 01:57:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 12:46:28.921272
- Title: MagDR: Mask-guided Detection and Reconstruction for Defending Deepfakes
- Title(参考訳): MagDR : マスクガイドによる深部損傷検出と再建
- Authors: Zhikai Chen and Lingxi Xie and Shanmin Pang and Yong He and Bo Zhang
- Abstract要約: MagDRは、逆襲からディープフェイクを守るためのマスクガイドによる検出と再構築パイプラインです。
実験では、MagDRはディープフェイクの主要な3つのタスクを守り、学習された再構築パイプラインは入力データ間で転送され、有望なパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 46.07140326726742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfakes raised serious concerns on the authenticity of visual contents.
Prior works revealed the possibility to disrupt deepfakes by adding adversarial
perturbations to the source data, but we argue that the threat has not been
eliminated yet. This paper presents MagDR, a mask-guided detection and
reconstruction pipeline for defending deepfakes from adversarial attacks. MagDR
starts with a detection module that defines a few criteria to judge the
abnormality of the output of deepfakes, and then uses it to guide a learnable
reconstruction procedure. Adaptive masks are extracted to capture the change in
local facial regions. In experiments, MagDR defends three main tasks of
deepfakes, and the learned reconstruction pipeline transfers across input data,
showing promising performance in defending both black-box and white-box
attacks.
- Abstract(参考訳): ディープフェイクは視覚コンテンツの真正性に深刻な懸念を抱いた。
以前の研究で、ソースデータに逆の摂動を追加することでディープフェイクをディスラプトする可能性を明らかにしたが、我々はまだ脅威は排除されていないと主張している。
本稿では,敵攻撃からディープフェイクを保護するマスク誘導型検出・再構築パイプラインMagDRを提案する。
magdrは、deepfakesの出力の異常を判断するためのいくつかの基準を定義した検出モジュールから始まり、それを使用して学習可能な再構築手順をガイドする。
適応マスクを抽出し、局所的な顔領域の変化を捉える。
実験では、MagDRはディープフェイクの主要な3つのタスクを守り、学習された再構築パイプラインは入力データ間で転送される。
関連論文リスト
- DiffusionFake: Enhancing Generalization in Deepfake Detection via Guided Stable Diffusion [94.46904504076124]
ディープフェイク技術は、顔交換を極めて現実的にし、偽造された顔コンテンツの使用に対する懸念を高めている。
既存の方法は、顔操作の多様な性質のため、目に見えない領域に一般化するのに苦労することが多い。
顔偽造者の生成過程を逆転させて検出モデルの一般化を促進する新しいフレームワークであるDiffusionFakeを紹介する。
論文 参考訳(メタデータ) (2024-10-06T06:22:43Z) - Turn Fake into Real: Adversarial Head Turn Attacks Against Deepfake
Detection [58.1263969438364]
本稿では,3次元対向顔視によるディープフェイク検出器に対する最初の試みとして,対向頭部旋回(AdvHeat)を提案する。
実験では、現実的なブラックボックスシナリオにおいて、様々な検出器のAdvHeatに対する脆弱性を検証する。
さらなる分析により、AdvHeatは、クロス検出器転送性と防御に対する堅牢性の両方に対する従来の攻撃よりも優れていることが示されている。
論文 参考訳(メタデータ) (2023-09-03T07:01:34Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
我々は,最新の生成手法によって生成されたブラックボックス攻撃に対する単一イメージのディープフェイク検出器の脆弱性について検討した。
われわれの実験はFaceForensics++で行われている。
以上の結果から,ディープフェイクの再建過程において,1段階の偏微分拡散のみを用いることで,検出可能性を大幅に低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-11T15:57:51Z) - Mover: Mask and Recovery based Facial Part Consistency Aware Method for
Deepfake Video Detection [33.29744034340998]
Moverは新しいDeepfake検出モデルで、不特定の顔の部分の不整合を悪用する。
本稿では,事前学習されたエンコーダとマスク付きオートエンコーダを利用するデュアルネットワークを用いた新しいモデルを提案する。
我々の標準ベンチマーク実験は、Moverが極めて効果的であることを示している。
論文 参考訳(メタデータ) (2023-03-03T06:57:22Z) - Making DeepFakes more spurious: evading deep face forgery detection via
trace removal attack [16.221725939480084]
本稿では,DeepFakeアンチ・フォレスト・フォレストに対する検出非依存的トレース除去攻撃について紹介する。
検出器側を調査する代わりに、私たちの攻撃はオリジナルのDeepFake生成パイプラインを調べます。
実験により、提案された攻撃は6つの最先端のDeepFake検出器の検出精度を著しく損なうことが示された。
論文 参考訳(メタデータ) (2022-03-22T03:13:33Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - Deepfake Detection for Facial Images with Facemasks [17.238556058316412]
フェイスマスクを用いたディープフェイクにおける最先端のディープフェイク検出モデルの性能を徹底的に評価した。
テマズクディープフェイク検出:顔パタンカードフェイスクロップの2つの手法を提案する。
論文 参考訳(メタデータ) (2022-02-23T09:01:27Z) - Understanding the Security of Deepfake Detection [23.118012417901078]
本研究では,最先端のディープフェイク検出手法の対向的設定における安全性について検討する。
FaceForensics++やFacebook Deepfake Detection Challengeなど、大規模な公開ディープフェイクデータソースを2つ使用しています。
本研究は, 対戦環境におけるディープフェイク検出手法のセキュリティ上の制約を明らかにした。
論文 参考訳(メタデータ) (2021-07-05T14:18:21Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
我々は,インターネットから完全に収集された707のディープフェイクビデオから抽出された7,314の顔シーケンスからなる新しいデータセットWildDeepfakeを紹介した。
既存のWildDeepfakeデータセットと我々のWildDeepfakeデータセットのベースライン検出ネットワークを体系的に評価し、WildDeepfakeが実際により困難なデータセットであることを示す。
論文 参考訳(メタデータ) (2021-01-05T11:10:32Z) - Deep Spatial Gradient and Temporal Depth Learning for Face Anti-spoofing [61.82466976737915]
深層学習は、顔の反偽造の最も効果的な方法の1つとして証明されている。
2つの洞察に基づいて,複数フレームからの提示攻撃を検出する新しい手法を提案する。
提案手法は,5つのベンチマークデータセットの最先端結果を実現する。
論文 参考訳(メタデータ) (2020-03-18T06:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。