論文の概要: Deepfake Detection for Facial Images with Facemasks
- arxiv url: http://arxiv.org/abs/2202.11359v1
- Date: Wed, 23 Feb 2022 09:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 00:10:05.235237
- Title: Deepfake Detection for Facial Images with Facemasks
- Title(参考訳): facemaskを用いた顔画像のディープフェイク検出
- Authors: Donggeun Ko, Sangjun Lee, Jinyong Park, Saebyeol Shin, Donghee Hong,
Simon S. Woo
- Abstract要約: フェイスマスクを用いたディープフェイクにおける最先端のディープフェイク検出モデルの性能を徹底的に評価した。
テマズクディープフェイク検出:顔パタンカードフェイスクロップの2つの手法を提案する。
- 参考スコア(独自算出の注目度): 17.238556058316412
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyper-realistic face image generation and manipulation have givenrise to
numerous unethical social issues, e.g., invasion of privacy,threat of security,
and malicious political maneuvering, which re-sulted in the development of
recent deepfake detection methodswith the rising demands of deepfake forensics.
Proposed deepfakedetection methods to date have shown remarkable detection
perfor-mance and robustness. However, none of the suggested deepfakedetection
methods assessed the performance of deepfakes withthe facemask during the
pandemic crisis after the outbreak of theCovid-19. In this paper, we thoroughly
evaluate the performance ofstate-of-the-art deepfake detection models on the
deepfakes withthe facemask. Also, we propose two approaches to enhance
themasked deepfakes detection:face-patchandface-crop. The experi-mental
evaluations on both methods are assessed through the base-line deepfake
detection models on the various deepfake datasets.Our extensive experiments
show that, among the two methods,face-cropperforms better than theface-patch,
and could be a trainmethod for deepfake detection models to detect fake faces
withfacemask in real world.
- Abstract(参考訳): 超現実主義的な顔画像の生成と操作は、プライバシーの侵害、セキュリティの脅し、悪質な政治操作など、数多くの非倫理的な社会問題を引き起こしており、ディープフェイク法医学の需要が高まる中で、近年のディープフェイク検出法の開発に再燃している。
現在提案されている深度検出法は, 目覚しい検出率と堅牢性を示した。
しかし,提案されているディープフェイク検出法はいずれも,thecovid-19の流行後のパンデミック危機におけるフェイスマスクによるディープフェイクの動作を評価しなかった。
本稿では,facemaskを用いたディープフェイクにおける最先端ディープフェイク検出モデルの性能を徹底的に評価する。
また,マスク付きディープフェイク検出の2つのアプローチを提案する。
両手法の実験的評価は, 各種ディープフェイクデータセットのベースラインディープフェイク検出モデルを用いて評価され, この2つの手法のうち, 顔クロッパーフォームはフェイスパッチよりも優れており, 実世界のフェイクフェイスマスクを検出するためのディープフェイク検出モデルのためのトレインメソッドである可能性が示唆された。
関連論文リスト
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
被害者や人物のディープフェイクは、脅迫、ゆがみ、金融詐欺の詐欺師によって使用される。
本研究では,映像中の顔の存在の動的度を特徴付ける幾何学的フェイクネス機能(GFF)を提案する。
我々は、ビデオに同時に存在する複数の顔でビデオを分析するために、我々のアプローチを採用している。
論文 参考訳(メタデータ) (2024-10-10T13:10:34Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
ディープラーニングにより、高忠実度顔画像やビデオの作成や操作が可能になった。
この技術はディープフェイクとしても知られ、劇的な進歩を遂げ、ソーシャルメディアで人気を博している。
ディープフェイクのリスクを低減するため、強力な偽造検出方法を開発することが望ましい。
論文 参考訳(メタデータ) (2024-09-22T01:42:01Z) - Masked Conditional Diffusion Model for Enhancing Deepfake Detection [20.018495944984355]
本研究では,深度検出のための仮設条件拡散モデル (MCDM) を提案する。
マスクされたプリスタン顔から様々な偽造顔を生成し、ディープフェイク検出モデルにジェネリックでロバストな表現を学習するよう促す。
論文 参考訳(メタデータ) (2024-02-01T12:06:55Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
本稿では,3次元視線推定モデルから得られた視線表現を利用する,革新的なDeepFake検出手法であるGazeForensicsを紹介する。
実験の結果,提案したGazeForensicsは現在の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-13T04:48:33Z) - Facial Forgery-based Deepfake Detection using Fine-Grained Features [7.378937711027777]
ディープフェイクによる顔の偽造は、大きなセキュリティリスクを引き起こし、深刻な社会的懸念を引き起こしている。
我々は,詳細な分類問題としてディープフェイク検出を定式化し,それに対する新たなきめ細かな解を提案する。
本手法は, 背景雑音を効果的に抑制し, 様々なスケールの識別特徴を学習することにより, 微妙で一般化可能な特徴を学習し, 深度検出を行う。
論文 参考訳(メタデータ) (2023-10-10T21:30:05Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
我々は,最新の生成手法によって生成されたブラックボックス攻撃に対する単一イメージのディープフェイク検出器の脆弱性について検討した。
われわれの実験はFaceForensics++で行われている。
以上の結果から,ディープフェイクの再建過程において,1段階の偏微分拡散のみを用いることで,検出可能性を大幅に低下させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-11T15:57:51Z) - Understanding the Security of Deepfake Detection [23.118012417901078]
本研究では,最先端のディープフェイク検出手法の対向的設定における安全性について検討する。
FaceForensics++やFacebook Deepfake Detection Challengeなど、大規模な公開ディープフェイクデータソースを2つ使用しています。
本研究は, 対戦環境におけるディープフェイク検出手法のセキュリティ上の制約を明らかにした。
論文 参考訳(メタデータ) (2021-07-05T14:18:21Z) - Robust Face-Swap Detection Based on 3D Facial Shape Information [59.32489266682952]
顔のスワップ画像やビデオは、悪意ある攻撃者を惹きつけ、重要な人物の信用を損ねている。
以前のピクセルレベルのアーティファクトに基づく検出技術は、常に不明瞭なパターンにフォーカスするが、利用可能なセマンティックなヒントは無視する。
キーフィギュアの顔・スワップ検出のための外観・形状特徴をフル活用するための生体情報に基づく手法を提案する。
論文 参考訳(メタデータ) (2021-04-28T09:35:48Z) - DeepFake Detection Based on the Discrepancy Between the Face and its
Context [94.47879216590813]
単一画像における顔のスワップやその他のアイデンティティ操作を検出する手法を提案する。
提案手法は, (i) 厳密なセマンティックセグメンテーションによって境界付けられた顔領域を考慮した顔識別ネットワークと, (ii) 顔コンテキストを考慮したコンテキスト認識ネットワークの2つのネットワークを含む。
本稿では,2つのネットワークからの認識信号を用いて,そのような不一致を検出する手法について述べる。
提案手法は,FaceForensics++,Celeb-DF-v2,DFDCベンチマークを用いて顔検出を行い,未知の手法で生成した偽物の検出を一般化する。
論文 参考訳(メタデータ) (2020-08-27T17:04:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。