論文の概要: An Efficiently Coupled Shape and Appearance Prior for Active Contour
Segmentation
- arxiv url: http://arxiv.org/abs/2103.14887v1
- Date: Sat, 27 Mar 2021 12:14:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 15:07:03.545851
- Title: An Efficiently Coupled Shape and Appearance Prior for Active Contour
Segmentation
- Title(参考訳): アクティブな輪郭セグメンテーションのための効率的結合形状と外観
- Authors: Martin Mueller and Navdeep Dahiya and Anthony Yezzi
- Abstract要約: 本論文では,画像と映像のオブジェクトセグメンテーションのための形状と外観特徴に基づく新しいトレーニングモデルを提案する。
外観に基づく特徴は,物体の等角線に沿って強度を積分することにより,物体の形状と効率的に結合する1次元関数である。
これらの形状と外観の連成PCAトレーニングは、形状と外観の相関をさらに活用し、その結果のトレーニングモデルは、認識分離タスクのための能動輪郭型エネルギー関数に組み込まれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel training model based on shape and appearance
features for object segmentation in images and videos. Whereas most such models
rely on two-dimensional appearance templates or a finite set of descriptors,
our appearance-based feature is a one-dimensional function, which is
efficiently coupled with the object's shape by integrating intensities along
the object's iso-contours. Joint PCA training on these shape and appearance
features further exploits shape-appearance correlations and the resulting
training model is incorporated in an active-contour-type energy functional for
recognition-segmentation tasks. Experiments on synthetic and infrared images
demonstrate how this shape and appearance training model improves accuracy
compared to methods based on the Chan-Vese energy.
- Abstract(参考訳): 本稿では,画像やビデオのオブジェクトセグメンテーションのための形状と外観の特徴に基づく新しいトレーニングモデルを提案する。
このようなモデルのほとんどは二次元の外観テンプレートや有限のディスクリプタに依存するが、外観に基づく特徴は1次元関数であり、物体のiso-輪郭に沿った強度を積分することにより、物体の形状と効率的に結合する。
これらの形状と外観の連成PCAトレーニングは、形状と外観の相関をさらに活用し、その結果のトレーニングモデルは、認識分離タスクのための能動輪郭型エネルギー関数に組み込まれる。
合成および赤外画像の実験では、この形状と外観の訓練モデルがチャン・ヴェイゼエネルギーに基づく手法と比較して精度を向上する方法が示されている。
関連論文リスト
- An End-to-End Deep Learning Generative Framework for Refinable Shape
Matching and Generation [45.820901263103806]
In-Silico Clinical Trials (ISCTs) の必要条件としての形状生成モデルの構築
本研究では,非教師なしの幾何学的深層学習モデルを構築し,潜在空間における補修可能な形状対応を確立する。
提案するベースモデルを,より可変性を高めるために,結合形状生成クラスタリングマルチアトラスフレームワークに拡張する。
論文 参考訳(メタデータ) (2024-03-10T21:33:53Z) - pix2gestalt: Amodal Segmentation by Synthesizing Wholes [34.45464291259217]
pix2gestaltはゼロショットアモーダルセグメンテーションのためのフレームワークである。
ゼロショットに挑戦する場合には,オブジェクト全体を再構成するための条件拡散モデルを学ぶ。
論文 参考訳(メタデータ) (2024-01-25T18:57:36Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
本稿では,視覚知覚タスクの拡散モデルを用いた簡易かつ効果的な手法を提案する。
学習可能な埋め込み(メタプロンプト)を事前学習した拡散モデルに導入し、知覚の適切な特徴を抽出する。
提案手法は,NYU 深度 V2 と KITTI の深度推定タスク,および CityScapes のセマンティックセグメンテーションタスクにおいて,新しい性能記録を実現する。
論文 参考訳(メタデータ) (2023-12-22T14:40:55Z) - ShapeMatcher: Self-Supervised Joint Shape Canonicalization,
Segmentation, Retrieval and Deformation [47.94499636697971]
本稿では,関節形状の正準化,分節化,検索,変形を行うための自己教師型学習フレームワークであるShapeMatcherを提案する。
ShapeMakerの重要な洞察は、標準化、セグメンテーション、検索、変形という4つの高関連プロセスの同時トレーニングである。
論文 参考訳(メタデータ) (2023-11-18T15:44:57Z) - Shape-centered Representation Learning for Visible-Infrared Person
Re-identification [53.56628297970931]
現在の可視赤外人物再識別法(VI-ReID)は外観特徴の抽出を優先する。
本研究では,形状に関連付けられた形状特徴と外観特徴に着目した形状中心表現学習フレームワーク(ScRL)を提案する。
形状に関連のある外観特徴を取得するために,形状特徴によって誘導される識別非関連特徴を抑えつつ,識別関連特徴をアクセントする外観特徴強調(AFE)を設計する。
論文 参考訳(メタデータ) (2023-10-27T07:57:24Z) - Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification [90.39454748065558]
体型は、VI-ReIDにとって重要なモダリティシェードの1つである。
本稿では,2つの部分空間におけるモダリティ共有特徴を関連づける形状学習パラダイムを提案する。
SYSU-MM01, RegDB, HITSZ-VCMデータセットを用いた実験により, 本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-04-09T10:22:10Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPoseは、トレーニング中に見えない新しいオブジェクトの6Dポーズを推定する方法である。
本稿では,新しいオブジェクトに適用可能なR&Compare戦略に基づく6次元ポーズリファインダを提案する。
第2に,合成レンダリングと同一物体の観察画像間のポーズ誤差をリファインダで補正できるか否かを分類するために訓練されたネットワークを利用する,粗いポーズ推定のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-13T19:30:03Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
本稿では,画像分類の性能向上のために,変形空間における変形可能な形状を学習する最初のディープラーニングモデルGeo-SICを提案する。
画像空間と潜時形状空間の両方から特徴を同時に導出する,クラス内変動の大きい新設計のフレームワークを提案する。
幾何学的形状表現の教師なし学習を取り入れた強化型分類網を開発した。
論文 参考訳(メタデータ) (2022-10-25T01:55:17Z) - Saliency-Driven Active Contour Model for Image Segmentation [2.8348950186890467]
本稿では,局所的な画像情報(LIF)を用いたサリエンシマップの利点を利用して,従来のモデルの欠点を克服する新しいモデルを提案する。
提案モデルでは,画像の鮮度マップと局所画像情報を用いて,アクティブな輪郭モデルの進行性を向上させる。
論文 参考訳(メタデータ) (2022-05-23T06:02:52Z) - Cross-Shape Attention for Part Segmentation of 3D Point Clouds [11.437076464287822]
本稿では,形状のポイントワイド特徴と他の形状との相互作用を可能にするために,断面アテンション機構を提案する。
このメカニズムは点間の相互作用の度合いを評価し、また形状間の特徴伝播を仲介する。
我々のアプローチは、人気の高いPartNetデータセットに最先端の結果をもたらす。
論文 参考訳(メタデータ) (2020-03-20T00:23:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。