論文の概要: Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification
- arxiv url: http://arxiv.org/abs/2304.04205v1
- Date: Sun, 9 Apr 2023 10:22:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 17:00:14.253993
- Title: Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification
- Title(参考訳): 可視赤外人物再同定のための形状関連特徴学習
- Authors: Jiawei Feng and Ancong Wu and Wei-Shi Zheng
- Abstract要約: 体型は、VI-ReIDにとって重要なモダリティシェードの1つである。
本稿では,2つの部分空間におけるモダリティ共有特徴を関連づける形状学習パラダイムを提案する。
SYSU-MM01, RegDB, HITSZ-VCMデータセットを用いた実験により, 本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 90.39454748065558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the modality gap between visible and infrared images with high visual
ambiguity, learning \textbf{diverse} modality-shared semantic concepts for
visible-infrared person re-identification (VI-ReID) remains a challenging
problem. Body shape is one of the significant modality-shared cues for VI-ReID.
To dig more diverse modality-shared cues, we expect that erasing
body-shape-related semantic concepts in the learned features can force the ReID
model to extract more and other modality-shared features for identification. To
this end, we propose shape-erased feature learning paradigm that decorrelates
modality-shared features in two orthogonal subspaces. Jointly learning
shape-related feature in one subspace and shape-erased features in the
orthogonal complement achieves a conditional mutual information maximization
between shape-erased feature and identity discarding body shape information,
thus enhancing the diversity of the learned representation explicitly.
Extensive experiments on SYSU-MM01, RegDB, and HITSZ-VCM datasets demonstrate
the effectiveness of our method.
- Abstract(参考訳): 視覚的曖昧度の高い可視像と赤外線像のモダリティギャップのため、可視的赤外線人物再識別(VI-ReID)のためのモダリティ共有意味概念を学習することは難しい問題である。
体型は、VI-ReIDにとって重要なモダリティシェードの1つである。
より多彩なモダリティ共有の手がかりを掘り下げるために、学習した特徴における体形関連セマンティック概念の消去は、ReIDモデルにさらに多くのモダリティ共有の特徴を抽出させ、識別に役立てることが期待できる。
そこで本研究では,2つの直交部分空間におけるモダリティ共有特徴をデコレーションする形状学習パラダイムを提案する。
1つの部分空間における形状関連特徴と直交補体における形状消去特徴とを共同学習することで、形状消去特徴と同一視された身体形状情報との条件付き相互情報最大化を実現し、学習表現の多様性を明示的に高める。
SYSU-MM01, RegDB, HITSZ-VCMデータセットの大規模な実験により, 本手法の有効性が示された。
関連論文リスト
- CLIP-Driven Semantic Discovery Network for Visible-Infrared Person
Re-Identification [39.262536758248245]
モダリティ間の同一性マッチングは、VIReIDにおいて重要な課題である。
本稿では,CLIP-Driven Semantic Discovery Network(CSDN)を提案する。
論文 参考訳(メタデータ) (2024-01-11T10:20:13Z) - Shape-centered Representation Learning for Visible-Infrared Person
Re-identification [53.56628297970931]
現在の可視赤外人物再識別法(VI-ReID)は外観特徴の抽出を優先する。
本研究では,形状に関連付けられた形状特徴と外観特徴に着目した形状中心表現学習フレームワーク(ScRL)を提案する。
形状に関連のある外観特徴を取得するために,形状特徴によって誘導される識別非関連特徴を抑えつつ,識別関連特徴をアクセントする外観特徴強調(AFE)を設計する。
論文 参考訳(メタデータ) (2023-10-27T07:57:24Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要かつ困難な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らす。
本稿では,新しい相互情報・モダリティコンセンサスネットワーク,すなわちCMInfoNetを提案し,モダリティ不変な同一性の特徴を抽出する。
論文 参考訳(メタデータ) (2023-08-29T06:55:42Z) - Learning Progressive Modality-shared Transformers for Effective
Visible-Infrared Person Re-identification [27.75907274034702]
我々は,能率VI-ReIDのためのPMT(Progressive Modality-Shared Transformer)という新しいディープラーニングフレームワークを提案する。
モダリティギャップの負の効果を低減するために、まず、グレースケールの画像を補助的なモダリティとして捉え、進歩的な学習戦略を提案する。
クラス内差が大きく,クラス間差が少ない問題に対処するために,識別中心損失を提案する。
論文 参考訳(メタデータ) (2022-12-01T02:20:16Z) - Towards Homogeneous Modality Learning and Multi-Granularity Information
Exploration for Visible-Infrared Person Re-Identification [16.22986967958162]
Visible-infrared person re-identification (VI-ReID) は、可視・赤外線カメラビューを介して人物画像の集合を検索することを目的とした、困難かつ必須の課題である。
従来の手法では, GAN (Generative Adversarial Network) を用いて, モーダリティ・コンシデント・データを生成する手法が提案されている。
そこで本研究では、視線外デュアルモード学習をグレーグレー単一モード学習問題として再構成する、統一されたダークラインスペクトルであるAligned Grayscale Modality (AGM)を用いて、モード間マッチング問題に対処する。
論文 参考訳(メタデータ) (2022-04-11T03:03:19Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - Exploring Modality-shared Appearance Features and Modality-invariant
Relation Features for Cross-modality Person Re-Identification [72.95858515157603]
クロスモダリティの人物再識別作業は、識別モダリティ共有機能に依存する。
初期の成功にもかかわらず、このようなモダリティ共有の外観機能は十分なモダリティ不変情報をキャプチャできない。
クロスモダリティの変動をさらに低減するために、新しいクロスモダリティ四重極損失が提案される。
論文 参考訳(メタデータ) (2021-04-23T11:14:07Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。