論文の概要: Tensor Networks for Multi-Modal Non-Euclidean Data
- arxiv url: http://arxiv.org/abs/2103.14998v1
- Date: Sat, 27 Mar 2021 21:33:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 14:48:44.788036
- Title: Tensor Networks for Multi-Modal Non-Euclidean Data
- Title(参考訳): マルチモーダル非ユークリッドデータのためのテンソルネットワーク
- Authors: Yao Lei Xu, Kriton Konstantinidis, Danilo P. Mandic
- Abstract要約: 本稿では,グラフ,テンソル,ニューラルネットワークの望ましい特性を物理的に有意義でコンパクトな方法で活用する,新しいマルチグラフネットワーク(mgtn)フレームワークを提案する。
これによりMGTNは不規則なデータソースのローカル情報をパラメータの複雑さを大幅に減らすことができる。
MGTNフレームワークの利点、特にテンソルネットワークの固有の低ランク正規化特性による過度な適合を回避する能力が示されている。
- 参考スコア(独自算出の注目度): 24.50116388903113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern data sources are typically of large scale and multi-modal natures, and
acquired on irregular domains, which poses serious challenges to traditional
deep learning models. These issues are partially mitigated by either extending
existing deep learning algorithms to irregular domains through graphs, or by
employing tensor methods to alleviate the computational bottlenecks imposed by
the Curse of Dimensionality. To simultaneously resolve both these issues, we
introduce a novel Multi-Graph Tensor Network (MGTN) framework, which leverages
on the desirable properties of graphs, tensors and neural networks in a
physically meaningful and compact manner. This equips MGTNs with the ability to
exploit local information in irregular data sources at a drastically reduced
parameter complexity, and over a range of learning paradigms such as
regression, classification and reinforcement learning. The benefits of the MGTN
framework, especially its ability to avoid overfitting through the inherent
low-rank regularization properties of tensor networks, are demonstrated through
its superior performance against competing models in the individual tensor,
graph, and neural network domains.
- Abstract(参考訳): 現代のデータソースは、通常、大規模でマルチモーダルな性質を持ち、不規則なドメインで取得され、従来のディープラーニングモデルに深刻な課題をもたらす。
これらの問題は、既存のディープラーニングアルゴリズムをグラフを通して不規則な領域に拡張するか、あるいは次元の曲線によって課される計算ボトルネックを軽減するためにテンソル法を用いることによって部分的に緩和される。
両問題を同時に解決するために,グラフ,テンソル,ニューラルネットワークの望ましい特性を物理的に有意かつコンパクトに活用する,新しい多グラフテンソルネットワーク(MGTN)フレームワークを導入する。
これによりMGTNは、不規則なデータソースのローカル情報を、パラメータの複雑さを大幅に減らし、回帰、分類、強化学習といった幅広い学習パラダイムで活用することができる。
MGTNフレームワークの利点、特にテンソルネットワークの固有の低ランク正規化特性による過度な適合を回避する能力は、個々のテンソル、グラフ、ニューラルネットワークドメインの競合モデルに対して優れた性能で示される。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Riemannian Residual Neural Networks [58.925132597945634]
残余ニューラルネットワーク(ResNet)の拡張方法を示す。
ResNetは、機械学習において、有益な学習特性、優れた経験的結果、そして様々なニューラルネットワークを構築する際に容易に組み込める性質のために、ユビキタスになった。
論文 参考訳(メタデータ) (2023-10-16T02:12:32Z) - Wide Network Learning with Differential Privacy [7.453881927237143]
現在のニューラルネットの世代は、最も実質的に関連するプライバシトレーニング体制下で大きな損失を被っている。
プライベートな経験最小化(ERM)の勾配を生かしたこれらのモデルを訓練するための一般的なアプローチを開発する。
同じパラメータの数に従って、ニューラルネットワークをプライベートにトレーニングするための新しいアルゴリズムを提案します。
論文 参考訳(メタデータ) (2021-03-01T20:31:50Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Tensor-Train Networks for Learning Predictive Modeling of
Multidimensional Data [0.0]
有望な戦略は、物理的および化学的用途で非常に成功したテンソルネットワークに基づいています。
本研究では, 多次元回帰モデルの重みをテンソルネットワークを用いて学習し, 強力なコンパクト表現を実現することを示した。
TT形式の重みを計算力の低減で近似するための最小二乗を交互に行うアルゴリズムが提案されている。
論文 参考訳(メタデータ) (2021-01-22T16:14:38Z) - Multi-Graph Tensor Networks [23.030263841031633]
本稿では,不規則なデータソースとテンソルネットワークの圧縮特性を深層学習環境で扱えるグラフを利用した新しいMulti-Graph Network(MGTN)フレームワークを提案する。
MGTNにより、FORTX通貨グラフを利用して、この要求されたタスクに経済的に意味のある構造を課し、結果として、3つの競合するモデルに対して非常に優れたパフォーマンスと、劇的に低い複雑性をもたらす。
論文 参考訳(メタデータ) (2020-10-25T20:14:57Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
重み付けされたRNNアーキテクチャを導入し、各リカレントセル内の個別の重み付け行列を共同で符号化する。
このアプローチはモデルのサイズを数桁削減するが、通常のRNNと同等あるいは優れた性能を維持している。
論文 参考訳(メタデータ) (2020-10-08T18:24:12Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
我々は、リカレントニューラルネットワーク(RNN)における隠れ状態のモデリングを近似するグラフフィルタフレームワークを開発する。
提案するフレームワークは、複数のマルチウェイシーケンスモデリングタスクを通じて検証され、従来のRNNに対してベンチマークされる。
提案したRGTNは,標準RNNよりも優れるだけでなく,従来のRNNと関連する次元の曲線を緩和できることを示す。
論文 参考訳(メタデータ) (2020-09-18T10:13:36Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。