論文の概要: Friends and Foes in Learning from Noisy Labels
- arxiv url: http://arxiv.org/abs/2103.15055v1
- Date: Sun, 28 Mar 2021 06:05:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 15:04:06.496287
- Title: Friends and Foes in Learning from Noisy Labels
- Title(参考訳): 騒々しいラベルから学ぶ友人とファン
- Authors: Yifan Zhou, Yifan Ge, Jianxin Wu
- Abstract要約: 本稿では、CIFARに基づくデータセットと精度評価基準が、この文脈では不適切であることを示す。
本稿では,この分野における適切な研究と評価を促進するために,代替有効な評価指標と新しいデータセットを提案する。
- 参考スコア(独自算出の注目度): 26.853158286641413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from examples with noisy labels has attracted increasing attention
recently. But, this paper will show that the commonly used CIFAR-based datasets
and the accuracy evaluation metric used in the literature are both
inappropriate in this context. An alternative valid evaluation metric and new
datasets are proposed in this paper to promote proper research and evaluation
in this area. Then, friends and foes are identified from existing methods as
technical components that are either beneficial or detrimental to deep learning
from noisy labeled examples, respectively, and this paper improves and combines
technical components from the friends category, including self-supervised
learning, new warmup strategy, instance filtering and label correction. The
resulting F&F method significantly outperforms existing methods on the proposed
nCIFAR datasets and the real-world Clothing1M dataset.
- Abstract(参考訳): ノイズの多いラベルを持つ例から学ぶことが近年注目を集めている。
しかし,本論文では,CIFARに基づくデータセットと文献で使用される精度評価基準が,この文脈では不適切であることを示す。
本稿では,この分野における適切な研究と評価を促進するために,代替有効な評価指標と新しいデータセットを提案する。
そして, 従来の手法から, ノイズのあるラベル付きサンプルからの深層学習に有益あるいは有害な技術要素として友人や敵を同定し, 自己教師付き学習, 新たなウォームアップ戦略, インスタンスフィルタリング, ラベル修正など, 友人のカテゴリからの技術的構成要素を改善し, 組み合わせる。
得られたF&F法は,提案したnCIFARデータセットと実世界のChrothing1Mデータセットの既存手法を著しく上回っている。
関連論文リスト
- Label-template based Few-Shot Text Classification with Contrastive Learning [7.964862748983985]
本稿では,単純かつ効果的なテキスト分類フレームワークを提案する。
ラベルテンプレートは入力文に埋め込まれ、クラスラベルの潜在値を完全に活用する。
教師付きコントラスト学習を用いて、サポートサンプルとクエリサンプル間の相互作用情報をモデル化する。
論文 参考訳(メタデータ) (2024-12-13T12:51:50Z) - Improving embedding with contrastive fine-tuning on small datasets with expert-augmented scores [12.86467344792873]
提案手法では,専門的なスコアから派生したソフトラベルをファインチューン埋め込みモデルに適用する。
オンラインショッピングサイトと8つのエキスパートモデルからQ&Aデータセットを用いて,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-08-19T01:59:25Z) - Maximizing Data Efficiency for Cross-Lingual TTS Adaptation by
Self-Supervised Representation Mixing and Embedding Initialization [57.38123229553157]
本稿では,テキスト音声合成システムにおける言語適応のための効果的な伝達学習フレームワークを提案する。
ラベル付きおよびラベルなしの最小データを用いて言語適応を実現することに注力する。
実験結果から,本フレームワークは,ラベル付きデータの4つの発声とラベル付きデータの15分で,未知の言語で理解不能な音声を合成できることが示唆された。
論文 参考訳(メタデータ) (2024-01-23T21:55:34Z) - Learning with Noisy Labels through Learnable Weighting and Centroid Similarity [5.187216033152917]
ノイズラベルは、医学診断や自律運転などの領域で一般的である。
本稿では,雑音ラベルの存在下で機械学習モデルを訓練するための新しい手法を提案する。
以上の結果から,本手法は既存の最先端技術よりも一貫して優れていることがわかった。
論文 参考訳(メタデータ) (2023-03-16T16:43:24Z) - Knowledge Distillation from Single to Multi Labels: an Empirical Study [14.12487391004319]
クラス活性化マップ(CAM)に基づく新しい蒸留法を提案する。
以上の結果から,ロジット法はマルチラベル分類に適していないことが示唆された。
そこで本研究では,適切な暗黒知識にクラス情報を導入し,最終分類結果と高い相関性を持たせることを提案する。
論文 参考訳(メタデータ) (2023-03-15T04:39:01Z) - Navigating the Pitfalls of Active Learning Evaluation: A Systematic
Framework for Meaningful Performance Assessment [3.3064235071867856]
アクティブラーニング(AL)は、ラベルなしデータのプールから最も情報性の高いサンプルをインタラクティブに選択することで、ラベル付けの負担を軽減することを目的としている。
半教師型(Semi-SL)や自己教師型学習(Self-SL)のような新興パラダイムと比較して、ALの有効性を疑問視する研究もある。
論文 参考訳(メタデータ) (2023-01-25T15:07:44Z) - Evaluating the Predictive Performance of Positive-Unlabelled
Classifiers: a brief critical review and practical recommendations for
improvement [77.34726150561087]
Positive-Unlabelled (PU) 学習は機械学習の領域として成長している。
本稿では、PU分類器を提案する51の論文において、主要なPU学習評価手法と予測精度の選択について批判的にレビューする。
論文 参考訳(メタデータ) (2022-06-06T08:31:49Z) - Annotation Error Detection: Analyzing the Past and Present for a More
Coherent Future [63.99570204416711]
我々は、潜在的なアノテーションの誤りを検知するための18の手法を再実装し、9つの英語データセット上で評価する。
アノテーションエラー検出タスクの新しい形式化を含む一様評価設定を定義する。
私たちはデータセットと実装を,使いやすく,オープンソースのソフトウェアパッケージとしてリリースしています。
論文 参考訳(メタデータ) (2022-06-05T22:31:45Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels [49.990938653249415]
本研究では,初期疑似ラベルを雑音ラベルデータとして用いる非ラベルデータに割り当て,雑音ラベルデータを用いて深層ニューラルネットワークを訓練する手法を提案する。
実験の結果,提案手法は,いくつかのベンチマークデータセットにおいて,最先端の手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-03-08T11:46:02Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
我々は,OODインスタンスを破棄するよりも,特定のOODインスタンスを検出・復号化することで,学習に肯定的な影響を及ぼすことを示す。
提案手法は,畳み込みニューラルネットワークの性能を著しく向上させる。
論文 参考訳(メタデータ) (2020-02-11T21:08:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。