Fisher Information in Noisy Intermediate-Scale Quantum Applications
- URL: http://arxiv.org/abs/2103.15191v3
- Date: Mon, 6 Sep 2021 16:03:52 GMT
- Title: Fisher Information in Noisy Intermediate-Scale Quantum Applications
- Authors: Johannes Jakob Meyer
- Abstract summary: The classical and quantum Fisher information are rooted in the field of quantum sensing.
Their utility in the study of other applications of noisy intermediate-scale quantum devices has only been discovered recently.
This article aims to further popularize classical and quantum Fisher information as useful tools for near-term applications beyond quantum sensing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent advent of noisy intermediate-scale quantum devices, especially
near-term quantum computers, has sparked extensive research efforts concerned
with their possible applications. At the forefront of the considered approaches
are variational methods that use parametrized quantum circuits. The classical
and quantum Fisher information are firmly rooted in the field of quantum
sensing and have proven to be versatile tools to study such parametrized
quantum systems. Their utility in the study of other applications of noisy
intermediate-scale quantum devices, however, has only been discovered recently.
Hoping to stimulate more such applications, this article aims to further
popularize classical and quantum Fisher information as useful tools for
near-term applications beyond quantum sensing. We start with a tutorial that
builds an intuitive understanding of classical and quantum Fisher information
and outlines how both quantities can be calculated on near-term devices. We
also elucidate their relationship and how they are influenced by noise
processes. Next, we give an overview of the core results of the quantum sensing
literature and proceed to a comprehensive review of recent applications in
variational quantum algorithms and quantum machine learning.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
We provide an introduction to Quantum Information Processing, focusing on a promising setup for its implementation.
We introduce the basic tools to understand and design quantum algorithms, always referring to their actual realization on a molecular spin architecture.
We present some examples of quantum algorithms proposed and implemented on a molecular spin qudit hardware.
arXiv Detail & Related papers (2024-05-31T16:43:20Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum utility -- definition and assessment of a practical quantum
advantage [0.0]
Different use-cases come with different requirements for size, weight, power consumption, or data privacy.
This paper aims to incorporate these characteristics into a concept coined quantum utility.
It demonstrates the effectiveness and practicality of quantum computers for various applications.
arXiv Detail & Related papers (2023-03-03T18:33:46Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
We are still a long way from reaching the maturity of a full-fledged quantum computer.
An outstanding challenge is to come up with an application that can reliably carry out a nontrivial task.
Several near-term quantum computing techniques have been proposed to characterize and mitigate errors.
arXiv Detail & Related papers (2022-11-16T07:53:15Z) - A Survey on Quantum Reinforcement Learning [2.5882725323376112]
Quantum reinforcement learning is an emerging field at the intersection of quantum computing and machine learning.
With a focus on already available noisy intermediate-scale quantum devices, these include variational quantum circuits acting as function approximators.
In addition, we survey quantum reinforcement learning algorithms based on future fault-tolerant hardware, some of which come with a provable quantum advantage.
arXiv Detail & Related papers (2022-11-07T11:25:47Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Recent advances for quantum classifiers [2.459525036555352]
We will review a number of quantum classification algorithms, including quantum support vector machine, quantum kernel methods, quantum decision tree, and quantum nearest neighbor algorithm.
We will then introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications.
arXiv Detail & Related papers (2021-08-30T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.