Recent advances for quantum classifiers
- URL: http://arxiv.org/abs/2108.13421v1
- Date: Mon, 30 Aug 2021 18:00:00 GMT
- Title: Recent advances for quantum classifiers
- Authors: Weikang Li and Dong-Ling Deng
- Abstract summary: We will review a number of quantum classification algorithms, including quantum support vector machine, quantum kernel methods, quantum decision tree, and quantum nearest neighbor algorithm.
We will then introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications.
- Score: 2.459525036555352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has achieved dramatic success in a broad spectrum of
applications. Its interplay with quantum physics may lead to unprecedented
perspectives for both fundamental research and commercial applications, giving
rise to an emergent research frontier of quantum machine learning. Along this
line, quantum classifiers, which are quantum devices that aim to solve
classification problems in machine learning, have attracted tremendous
attention recently. In this review, we give a relatively comprehensive overview
for the studies of quantum classifiers, with a focus on recent advances. First,
we will review a number of quantum classification algorithms, including quantum
support vector machine, quantum kernel methods, quantum decision tree, and
quantum nearest neighbor algorithm. Then, we move on to introduce the
variational quantum classifiers, which are essentially variational quantum
circuits for classifications. We will review different architectures for
constructing variational quantum classifiers and introduce the barren plateau
problem, where the training of quantum classifiers might be hindered by the
exponentially vanishing gradient. In addition, the vulnerability aspect of
quantum classifiers in the setting of adversarial learning and the recent
experimental progress on different quantum classifiers will also be discussed.
Related papers
- Quantum machine learning for multiclass classification beyond kernel methods [21.23851138896271]
We propose a quantum algorithm that demonstrates that quantum kernel methods enhance the efficiency of multiclass classification in real-world applications.
The results from quantum simulations reveal that the quantum algorithm outperforms its classical counterpart in handling six real-world classification problems.
arXiv Detail & Related papers (2024-11-05T08:58:30Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MORE stands for measurement and correlation based variational quantum multi-classifier.
We implement MORE using the Qiskit Python library and evaluate it through extensive experiments on both noise-free and noisy quantum systems.
arXiv Detail & Related papers (2023-07-21T19:33:10Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
We are still a long way from reaching the maturity of a full-fledged quantum computer.
An outstanding challenge is to come up with an application that can reliably carry out a nontrivial task.
Several near-term quantum computing techniques have been proposed to characterize and mitigate errors.
arXiv Detail & Related papers (2022-11-16T07:53:15Z) - A Survey on Quantum Reinforcement Learning [2.5882725323376112]
Quantum reinforcement learning is an emerging field at the intersection of quantum computing and machine learning.
With a focus on already available noisy intermediate-scale quantum devices, these include variational quantum circuits acting as function approximators.
In addition, we survey quantum reinforcement learning algorithms based on future fault-tolerant hardware, some of which come with a provable quantum advantage.
arXiv Detail & Related papers (2022-11-07T11:25:47Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - VSQL: Variational Shadow Quantum Learning for Classification [6.90132007891849]
We propose a new hybrid quantum-classical framework for supervised quantum learning, which we call Variational Shadow Quantum Learning.
We first use variational shadow quantum circuits to extract classical features in a convolution way and then utilize a fully-connected neural network to complete the classification task.
We show that this method could sharply reduce the number of parameters and thus better facilitate quantum circuit training.
arXiv Detail & Related papers (2020-12-15T13:51:01Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.