A Survey on Quantum Reinforcement Learning
- URL: http://arxiv.org/abs/2211.03464v2
- Date: Fri, 8 Mar 2024 10:06:43 GMT
- Title: A Survey on Quantum Reinforcement Learning
- Authors: Nico Meyer, Christian Ufrecht, Maniraman Periyasamy, Daniel D.
Scherer, Axel Plinge, and Christopher Mutschler
- Abstract summary: Quantum reinforcement learning is an emerging field at the intersection of quantum computing and machine learning.
With a focus on already available noisy intermediate-scale quantum devices, these include variational quantum circuits acting as function approximators.
In addition, we survey quantum reinforcement learning algorithms based on future fault-tolerant hardware, some of which come with a provable quantum advantage.
- Score: 2.5882725323376112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum reinforcement learning is an emerging field at the intersection of
quantum computing and machine learning. While we intend to provide a broad
overview of the literature on quantum reinforcement learning - our
interpretation of this term will be clarified below - we put particular
emphasis on recent developments. With a focus on already available noisy
intermediate-scale quantum devices, these include variational quantum circuits
acting as function approximators in an otherwise classical reinforcement
learning setting. In addition, we survey quantum reinforcement learning
algorithms based on future fault-tolerant hardware, some of which come with a
provable quantum advantage. We provide both a birds-eye-view of the field, as
well as summaries and reviews for selected parts of the literature.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Supervised Learning [0.5439020425819]
Recent advancements in quantum computing have positioned it as a prospective solution for tackling intricate computational challenges.
The field of quantum machine learning is still in its early stages, and there persists a level of skepticism regarding a possible near-term quantum advantage.
This paper aims to provide a classical perspective on current quantum algorithms for supervised learning.
arXiv Detail & Related papers (2024-07-24T11:05:05Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Modern applications of machine learning in quantum sciences [51.09906911582811]
We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms.
We discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.
arXiv Detail & Related papers (2022-04-08T17:48:59Z) - Recent advances for quantum classifiers [2.459525036555352]
We will review a number of quantum classification algorithms, including quantum support vector machine, quantum kernel methods, quantum decision tree, and quantum nearest neighbor algorithm.
We will then introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Fisher Information in Noisy Intermediate-Scale Quantum Applications [0.0]
The classical and quantum Fisher information are rooted in the field of quantum sensing.
Their utility in the study of other applications of noisy intermediate-scale quantum devices has only been discovered recently.
This article aims to further popularize classical and quantum Fisher information as useful tools for near-term applications beyond quantum sensing.
arXiv Detail & Related papers (2021-03-28T18:11:15Z) - A Unified Framework for Quantum Supervised Learning [0.7366405857677226]
We present an embedding-based framework for supervised learning with trainable quantum circuits.
The aim of these approaches is to map data from different classes to separated locations in the Hilbert space via the quantum feature map.
We establish an intrinsic connection between the explicit approach and other quantum supervised learning models.
arXiv Detail & Related papers (2020-10-25T18:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.