ReAgent: Point Cloud Registration using Imitation and Reinforcement
Learning
- URL: http://arxiv.org/abs/2103.15231v1
- Date: Sun, 28 Mar 2021 22:04:42 GMT
- Title: ReAgent: Point Cloud Registration using Imitation and Reinforcement
Learning
- Authors: Dominik Bauer, Timothy Patten and Markus Vincze
- Abstract summary: We present a novel point cloud registration agent (ReAgent) for 3D computer vision tasks.
We employ imitation learning to initialize its discrete registration policy based on a steady expert policy.
We compare our approach to classical and learning-based registration methods on both ModelNet40 (synthetic) and ScanObjectNN (real data) and show that our ReAgent achieves state-of-the-art accuracy.
- Score: 28.244027792644097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud registration is a common step in many 3D computer vision tasks
such as object pose estimation, where a 3D model is aligned to an observation.
Classical registration methods generalize well to novel domains but fail when
given a noisy observation or a bad initialization. Learning-based methods, in
contrast, are more robust but lack in generalization capacity. We propose to
consider iterative point cloud registration as a reinforcement learning task
and, to this end, present a novel registration agent (ReAgent). We employ
imitation learning to initialize its discrete registration policy based on a
steady expert policy. Integration with policy optimization, based on our
proposed alignment reward, further improves the agent's registration
performance. We compare our approach to classical and learning-based
registration methods on both ModelNet40 (synthetic) and ScanObjectNN (real
data) and show that our ReAgent achieves state-of-the-art accuracy. The
lightweight architecture of the agent, moreover, enables reduced inference time
as compared to related approaches. In addition, we apply our method to the
object pose estimation task on real data (LINEMOD), outperforming
state-of-the-art pose refinement approaches.
Related papers
- Topology-Aware Modeling for Unsupervised Simulation-to-Reality Point Cloud Recognition [63.55828203989405]
We introduce a novel Topology-Aware Modeling (TAM) framework for Sim2Real UDA on object point clouds.<n>Our approach mitigates the domain gap by leveraging global spatial topology, characterized by low-level, high-frequency 3D structures.<n>We propose an advanced self-training strategy that combines cross-domain contrastive learning with self-training.
arXiv Detail & Related papers (2025-06-26T11:53:59Z) - CMR-Agent: Learning a Cross-Modal Agent for Iterative Image-to-Point Cloud Registration [2.400446821380503]
Image-to-point cloud registration aims to determine the relative camera pose of an RGB image with respect to a point cloud.
Most learning-based methods establish 2D-3D point correspondences in feature space without any feedback mechanism for iterative optimization.
We propose to reformulate the registration procedure as an iterative Markov decision process, allowing for incremental adjustments to the camera pose.
arXiv Detail & Related papers (2024-08-05T11:40:59Z) - ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - GAFAR: Graph-Attention Feature-Augmentation for Registration A Fast and
Light-weight Point Set Registration Algorithm [12.592563880121816]
rigid registration of point clouds is a fundamental problem in computer vision.
Deep learning in computer vision has brought new drive to research on this topic.
We present a novel fast and light-weight network architecture using the attention mechanism to augment point descriptors.
arXiv Detail & Related papers (2023-07-05T14:50:36Z) - Unsupervised 3D registration through optimization-guided cyclical
self-training [71.75057371518093]
State-of-the-art deep learning-based registration methods employ three different learning strategies.
We propose a novel self-supervised learning paradigm for unsupervised registration, relying on self-training.
We evaluate the method for abdomen and lung registration, consistently surpassing metric-based supervision and outperforming diverse state-of-the-art competitors.
arXiv Detail & Related papers (2023-06-29T14:54:10Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
We tackle the task of estimating the 6D pose of an object from point cloud data.
Recent learning-based approaches to addressing this task have shown great success on synthetic datasets.
We analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds.
arXiv Detail & Related papers (2022-03-29T07:55:04Z) - What Stops Learning-based 3D Registration from Working in the Real
World? [53.68326201131434]
This work identifies the sources of 3D point cloud registration failures, analyze the reasons behind them, and propose solutions.
Ultimately, this translates to a best-practice 3D registration network (BPNet), constituting the first learning-based method able to handle previously-unseen objects in real-world data.
Our model generalizes to real data without any fine-tuning, reaching an accuracy of up to 67% on point clouds of unseen objects obtained with a commercial sensor.
arXiv Detail & Related papers (2021-11-19T19:24:27Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
We show that our model, called a graph structured surrogate model (GSSM), outperforms state-of-the-art methods in predicting environment dynamics.
Our approach is able to obtain high returns, while allowing fast execution during deployment by avoiding test time policy gradient optimization.
arXiv Detail & Related papers (2021-02-16T17:21:55Z) - Learning the Update Operator for 2D/3D Image Registration [10.720342813316531]
preoperative volume can be overlaid over the 2D images using 2D/3D image registration.
Deep learning-based 2D/3D registration methods have shown promising results by improving computational efficiency and robustness.
We show an improvement of 1.8 times in terms of registration accuracy for the update step prediction compared to learning without the known operator.
arXiv Detail & Related papers (2021-02-04T19:52:59Z) - 3D Registration for Self-Occluded Objects in Context [66.41922513553367]
We introduce the first deep learning framework capable of effectively handling this scenario.
Our method consists of an instance segmentation module followed by a pose estimation one.
It allows us to perform 3D registration in a one-shot manner, without requiring an expensive iterative procedure.
arXiv Detail & Related papers (2020-11-23T08:05:28Z) - Coarse-to-Fine Pre-training for Named Entity Recognition [26.00489191164784]
We propose a NER-specific pre-training framework to in-ject coarse-to-fine automatically mined entityknowledge into pre-trained models.
Our framework achieves significant improvements against several pre-trained base-lines, establishing the new state-of-the-art per-formance on three benchmarks.
arXiv Detail & Related papers (2020-10-16T07:39:20Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.