Learning on heterogeneous graphs using high-order relations
- URL: http://arxiv.org/abs/2103.15532v1
- Date: Mon, 29 Mar 2021 12:02:47 GMT
- Title: Learning on heterogeneous graphs using high-order relations
- Authors: See Hian Lee, Feng Ji, Wee Peng Tay
- Abstract summary: We propose an approach for learning on heterogeneous graphs without using meta-paths.
We decompose a heterogeneous graph into different homogeneous relation-type graphs, which are then combined to create higher-order relation-type representations.
- Score: 37.64632406923687
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A heterogeneous graph consists of different vertices and edges types.
Learning on heterogeneous graphs typically employs meta-paths to deal with the
heterogeneity by reducing the graph to a homogeneous network, guide random
walks or capture semantics. These methods are however sensitive to the choice
of meta-paths, with suboptimal paths leading to poor performance. In this
paper, we propose an approach for learning on heterogeneous graphs without
using meta-paths. Specifically, we decompose a heterogeneous graph into
different homogeneous relation-type graphs, which are then combined to create
higher-order relation-type representations. These representations preserve the
heterogeneity of edges and retain their edge directions while capturing the
interaction of different vertex types multiple hops apart. This is then
complemented with attention mechanisms to distinguish the importance of the
relation-type based neighbors and the relation-types themselves. Experiments
demonstrate that our model generally outperforms other state-of-the-art
baselines in the vertex classification task on three commonly studied
heterogeneous graph datasets.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Hyperbolic Heterogeneous Graph Attention Networks [3.0165549581582454]
Most previous heterogeneous graph embedding models represent elements in a heterogeneous graph as vector representations in a low-dimensional Euclidean space.
We propose Hyperbolic Heterogeneous Graph Attention Networks (HHGAT) that learn vector representations in hyperbolic spaces with meta-path instances.
We conducted experiments on three real-world heterogeneous graph datasets, demonstrating that HHGAT outperforms state-of-the-art heterogeneous graph embedding models in node classification and clustering tasks.
arXiv Detail & Related papers (2024-04-15T04:45:49Z) - Generation is better than Modification: Combating High Class Homophily Variance in Graph Anomaly Detection [51.11833609431406]
Homophily distribution differences between different classes are significantly greater than those in homophilic and heterophilic graphs.
We introduce a new metric called Class Homophily Variance, which quantitatively describes this phenomenon.
To mitigate its impact, we propose a novel GNN model named Homophily Edge Generation Graph Neural Network (HedGe)
arXiv Detail & Related papers (2024-03-15T14:26:53Z) - Robust Graph Structure Learning under Heterophily [12.557639223778722]
We propose a novel robust graph structure learning method to achieve a high-quality graph from heterophilic data for downstream tasks.
We first apply a high-pass filter to make each node more distinctive from its neighbors by encoding structure information into the node features.
Then, we learn a robust graph with an adaptive norm characterizing different levels of noise.
arXiv Detail & Related papers (2024-03-06T12:29:13Z) - HiGPT: Heterogeneous Graph Language Model [27.390123898556805]
Heterogeneous graph learning aims to capture complex relationships and diverse semantics among entities in a heterogeneous graph.
Existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets.
We propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm.
arXiv Detail & Related papers (2024-02-25T08:07:22Z) - Finding the Missing-half: Graph Complementary Learning for
Homophily-prone and Heterophily-prone Graphs [48.79929516665371]
Graphs with homophily-prone edges tend to connect nodes with the same class.
Heterophily-prone edges tend to build relationships between nodes with different classes.
Existing GNNs only take the original graph during training.
arXiv Detail & Related papers (2023-06-13T08:06:10Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Hybrid Micro/Macro Level Convolution for Heterogeneous Graph Learning [45.14314180743549]
Heterogeneous graphs are pervasive in practical scenarios, where each graph consists of multiple types of nodes and edges.
Most of the existing graph convolution approaches were designed for homogeneous graphs, and therefore cannot handle heterogeneous graphs.
We propose HGConv, a novel Heterogeneous Graph Convolution approach, to learn comprehensive node representations on heterogeneous graphs.
arXiv Detail & Related papers (2020-12-29T12:12:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.