Latent-Graph Learning for Disease Prediction
- URL: http://arxiv.org/abs/2003.13620v2
- Date: Fri, 13 May 2022 10:30:03 GMT
- Title: Latent-Graph Learning for Disease Prediction
- Authors: Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab and Michael
Bronstein
- Abstract summary: We show that it is possible to learn a single, optimal graph towards the GCN's downstream task of disease classification.
Unlike commonly employed spectral GCN approaches, our GCN is spatial and inductive, and can thus infer previously unseen patients as well.
- Score: 44.26665239213658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Graph Convolutional Networks (GCNs) have proven to be a powerful
machine learning tool for Computer-Aided Diagnosis (CADx) and disease
prediction. A key component in these models is to build a population graph,
where the graph adjacency matrix represents pair-wise patient similarities.
Until now, the similarity metrics have been defined manually, usually based on
meta-features like demographics or clinical scores. The definition of the
metric, however, needs careful tuning, as GCNs are very sensitive to the graph
structure. In this paper, we demonstrate for the first time in the CADx domain
that it is possible to learn a single, optimal graph towards the GCN's
downstream task of disease classification. To this end, we propose a novel,
end-to-end trainable graph learning architecture for dynamic and localized
graph pruning. Unlike commonly employed spectral GCN approaches, our GCN is
spatial and inductive, and can thus infer previously unseen patients as well.
We demonstrate significant classification improvements with our learned graph
on two CADx problems in medicine. We further explain and visualize this result
using an artificial dataset, underlining the importance of graph learning for
more accurate and robust inference with GCNs in medical applications.
Related papers
- Extended Graph Assessment Metrics for Graph Neural Networks [13.49677006107642]
We introduce extended graph assessment metrics (GAMs) for regression tasks and continuous adjacency matrices.
We show the correlation of these metrics with model performance on different medical population graphs and under different learning settings.
arXiv Detail & Related papers (2023-07-13T13:55:57Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
We propose a knowledge graph with Dynamic structure and nodes to facilitate medical report generation with Contrastive Learning.
In detail, the fundamental structure of our graph is pre-constructed from general knowledge.
Each image feature is integrated with its very own updated graph before being fed into the decoder module for report generation.
arXiv Detail & Related papers (2023-03-18T03:53:43Z) - GraphHD: Efficient graph classification using hyperdimensional computing [58.720142291102135]
We present a baseline approach for graph classification with HDC.
We evaluate GraphHD on real-world graph classification problems.
Our results show that when compared to the state-of-the-art Graph Neural Networks (GNNs) the proposed model achieves comparable accuracy.
arXiv Detail & Related papers (2022-05-16T17:32:58Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
Graphs are a powerful tool for representing and analyzing unstructured, non-Euclidean data ubiquitous in the healthcare domain.
Recent works have shown that considering relationships between input data samples have a positive regularizing effect for the downstream task.
We propose Graph-in-Graph (GiG), a neural network architecture for protein classification and brain imaging applications.
arXiv Detail & Related papers (2022-04-01T10:01:37Z) - GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent
Inference [41.348451615460796]
We propose a novel semi-supervised approach named GKD based on knowledge distillation.
We perform experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer's disease.
According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.
arXiv Detail & Related papers (2021-04-08T08:23:37Z) - Heterogeneous Similarity Graph Neural Network on Electronic Health
Records [74.66674469510251]
We propose Heterogeneous Similarity Graph Neural Network (HSGNN) to analyze EHRs with a novel heterogeneous GNN.
Our framework consists of two parts: one is a preprocessing method and the other is an end-to-end GNN.
The GNN takes all homogeneous graphs as input and fuses all of them into one graph to make a prediction.
arXiv Detail & Related papers (2021-01-17T23:14:29Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Cross-Global Attention Graph Kernel Network Prediction of Drug
Prescription [5.132187039529859]
We present an end-to-end, interpretable, deep-learning architecture to learn a graph kernel that predicts the outcome of chronic disease drug prescription.
arXiv Detail & Related papers (2020-08-04T22:36:46Z) - Differentiable Graph Module (DGM) for Graph Convolutional Networks [44.26665239213658]
Differentiable Graph Module (DGM) is a learnable function that predicts edge probabilities in the graph which are optimal for the downstream task.
We provide an extensive evaluation of applications from the domains of healthcare (disease prediction), brain imaging (age prediction), computer graphics (3D point cloud segmentation), and computer vision (zero-shot learning)
arXiv Detail & Related papers (2020-02-11T12:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.