論文の概要: SetVAE: Learning Hierarchical Composition for Generative Modeling of
Set-Structured Data
- arxiv url: http://arxiv.org/abs/2103.15619v1
- Date: Mon, 29 Mar 2021 14:01:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-30 15:19:50.422852
- Title: SetVAE: Learning Hierarchical Composition for Generative Modeling of
Set-Structured Data
- Title(参考訳): setvae: 集合構造データの生成モデルのための階層構成の学習
- Authors: Jinwoo Kim, Jaehoon Yoo, Juho Lee and Seunghoon Hong
- Abstract要約: 集合の階層的変分オートエンコーダであるSetVAEを提案する。
セットエンコーディングの最近の進歩に動機づけられて、我々は最初にセットを分割し、元のカーディナリティにパーティションを投影する注意深いモジュールの上にSetVAEを構築します。
我々は,本モデルが集合のサイズを示さずに一般化し,監督なしに興味深い部分集合関係を学習できることを実証する。
- 参考スコア(独自算出の注目度): 27.274328701618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative modeling of set-structured data, such as point clouds, requires
reasoning over local and global structures at various scales. However, adopting
multi-scale frameworks for ordinary sequential data to a set-structured data is
nontrivial as it should be invariant to the permutation of its elements. In
this paper, we propose SetVAE, a hierarchical variational autoencoder for sets.
Motivated by recent progress in set encoding, we build SetVAE upon attentive
modules that first partition the set and project the partition back to the
original cardinality. Exploiting this module, our hierarchical VAE learns
latent variables at multiple scales, capturing coarse-to-fine dependency of the
set elements while achieving permutation invariance. We evaluate our model on
point cloud generation task and achieve competitive performance to the prior
arts with substantially smaller model capacity. We qualitatively demonstrate
that our model generalizes to unseen set sizes and learns interesting subset
relations without supervision. Our implementation is available at
https://github.com/jw9730/setvae.
- Abstract(参考訳): 点雲のような集合構造データの生成モデリングには、様々なスケールで局所的および大域的構造を推論する必要がある。
しかしながら、通常のシーケンシャルデータからセット構造データへのマルチスケールフレームワークの採用は、要素の置換に不変である必要があるため、非自明である。
本稿では,集合の階層的変分オートエンコーダであるSetVAEを提案する。
セットエンコーディングの最近の進歩に触発された私たちは、最初に集合を分割し、分割を元の濃度に投影する注意深いモジュールの上に SetVAE を構築します。
このモジュールをエクスプロイトすると、階層的VAEは複数のスケールで潜伏変数を学習し、置換不変性を達成しながら、集合要素の粗い依存を捉えます。
我々は,ポイントクラウド生成タスクのモデルを評価し,モデル容量が大幅に小さく,先行技術との競争性能を達成する。
定性的に、我々のモデルは集合のサイズが見えないように一般化し、監督なしで興味深い部分集合関係を学習する。
実装はhttps://github.com/jw9730/setvaeで利用可能です。
関連論文リスト
- ComboStoc: Combinatorial Stochasticity for Diffusion Generative Models [65.82630283336051]
拡散生成モデルの既存のトレーニングスキームにより,次元と属性の組み合わせによって区切られた空間が十分に標本化されていないことを示す。
構造を完全に活用するプロセスを構築し,ComboStocという名前でこの問題に対処する。
論文 参考訳(メタデータ) (2024-05-22T15:23:10Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
このフレームワークは、単純な基本的なビルディングブロック(決定木)を使用して、必要な複雑さの自己相似モデルを構築する。
我々は,NumeraiデータセットでトレーニングしたXGBoostモデルを用いて提案手法を実証し,異なるモデルスナップショット上での2層のXGBoostモデルの深部アンサンブルが高品質な予測を提供することを示す。
論文 参考訳(メタデータ) (2023-03-14T14:10:37Z) - Sequence-to-Set Generative Models [9.525560801277903]
本稿では,任意のシーケンス生成モデルを集合生成モデルに変換するシーケンス・ツー・セット法を提案する。
本稿では,シーケンス・ツー・セット方式の例であるGRU2Setについて述べる。
我々のモデルの直接的な応用は、eコマース注文の集合から注文/セット分布を学ぶことである。
論文 参考訳(メタデータ) (2022-09-19T07:13:51Z) - Hierarchical Few-Shot Generative Models [18.216729811514718]
本稿では,ニューラルネットワークを階層的なアプローチに拡張する潜伏変数のアプローチについて検討する。
以上の結果から,階層的な定式化は,小データ構造における集合内の内在的変動をよりよく捉えることが示唆された。
論文 参考訳(メタデータ) (2021-10-23T19:19:39Z) - Learning Prototype-oriented Set Representations for Meta-Learning [85.19407183975802]
集合構造データから学ぶことは、近年注目を集めている根本的な問題である。
本稿では,既存の要約ネットワークを改善するための新しい最適輸送方式を提案する。
さらに、少数ショット分類と暗黙的メタ生成モデリングの事例にインスタンス化する。
論文 参考訳(メタデータ) (2021-10-18T09:49:05Z) - Data Summarization via Bilevel Optimization [48.89977988203108]
シンプルだが強力なアプローチは、小さなサブセットのデータを操作することだ。
本研究では,コアセット選択を基数制約付き双レベル最適化問題として定式化する汎用コアセットフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-26T09:08:38Z) - Set Representation Learning with Generalized Sliced-Wasserstein
Embeddings [22.845403993200932]
集合構造データから表現を学習するための幾何学的解釈可能なフレームワークを提案する。
特に、確率測度からのサンプルとして集合の要素を扱い、一般化スライスワッサーシュタインに対する正確なユークリッド埋め込みを提案する。
我々は,複数の教師付きおよび教師なし集合学習タスクに関する提案フレームワークを評価し,最先端集合表現学習アプローチに対するその優位性を実証する。
論文 参考訳(メタデータ) (2021-03-05T19:00:34Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Structure by Architecture: Structured Representations without
Regularization [31.75200752252397]
生成モデルなどの下流タスクにオートエンコーダを用いた自己教師型表現学習の課題について検討する。
我々はアグレッシブな正規化を必要とせずに構造化表現を学習できる新しいオートエンコーダアーキテクチャを設計する。
これらのモデルが、生成、絡み合い、外挿を含む様々な下流タスクの結果を改善する表現をいかに学習するかを実証する。
論文 参考訳(メタデータ) (2020-06-14T04:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。