論文の概要: Iterative Gradient Encoding Network with Feature Co-Occurrence Loss for
Single Image Reflection Removal
- arxiv url: http://arxiv.org/abs/2103.15903v1
- Date: Mon, 29 Mar 2021 19:29:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:42:28.197560
- Title: Iterative Gradient Encoding Network with Feature Co-Occurrence Loss for
Single Image Reflection Removal
- Title(参考訳): 単一画像反射除去のための特徴共起損失を伴う反復勾配符号化ネットワーク
- Authors: Sutanu Bera, Prabir Kumar Biswas
- Abstract要約: 単一画像反射除去のための反復グラデーション符号化ネットワークを提案する。
提案手法は,既存の画像設定に対する反射を良好に除去することができる。
- 参考スコア(独自算出の注目度): 6.370905925442655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Removing undesired reflections from a photo taken in front of glass is of
great importance for enhancing visual computing systems' efficiency. Previous
learning-based approaches have produced visually plausible results for some
reflections type, however, failed to generalize against other reflection types.
There is a dearth of literature for efficient methods concerning single image
reflection removal, which can generalize well in large-scale reflection types.
In this study, we proposed an iterative gradient encoding network for single
image reflection removal. Next, to further supervise the network in learning
the correlation between the transmission layer features, we proposed a feature
co-occurrence loss. Extensive experiments on the public benchmark dataset of
SIR$^2$ demonstrated that our method can remove reflection favorably against
the existing state-of-the-art method on all imaging settings, including diverse
backgrounds. Moreover, as the reflection strength increases, our method can
still remove reflection even where other state of the art methods failed.
- Abstract(参考訳): ガラスの前で撮影した写真から望ましくない反射を除去することは、視覚コンピューティングシステムの効率を高める上で非常に重要である。
従来の学習に基づくアプローチでは、いくつかの反射型に対して視覚的に妥当な結果が得られたが、他の反射型に対して一般化できなかった。
単一画像反射除去に関する効率的な手法には文献が多数存在し,大規模な反射型を一般化することができる。
本研究では,単一画像反射除去のための反復勾配符号化ネットワークを提案する。
次に,伝送層の特徴の相関関係を学習するために,ネットワークのさらなる監視を行うため,特徴的共起損失を提案する。
SIR$^2$の公開ベンチマークデータセットに対する大規模な実験により、多様な背景を含むすべての画像設定における既存の最先端手法に対する反射を良好に除去できることが実証された。
さらに,反射強度が増大するにつれて,他の手法が失敗した場合でも反射を除去することができる。
関連論文リスト
- Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
単一の画像反射除去は本質的に不明瞭であり、分離を必要とする反射成分と透過成分の両方が自然な画像統計に従う可能性がある。
既存の手法では、様々な種類の低レベルおよび物理ベースのキューを反射信号の源として利用することでこの問題に対処しようとする。
本稿では,様々な形態のスパース・ヒューマン・ガイダンスを活用するフレキシブル・インタラクティブ・リフレクション・リフレクション・リフレクション・リフレクション・リジェクション・リジェクション・アプローチを提案する。
論文 参考訳(メタデータ) (2024-06-03T17:34:37Z) - Single Image Reflection Removal with Reflection Intensity Prior
Knowledge [14.335849624907611]
本稿では、反射現象の強度を捉えるための一般的な反射強度を提案する。
画像の領域パッチへの分割により、RPENは画像に先立って一様でない反射を学習する。
本稿では, 単純なトランスフォーマU-Netアーキテクチャを用いて, プリエントベース反射除去ネットワーク(PRRN)を提案する。
論文 参考訳(メタデータ) (2023-12-06T14:52:11Z) - Revisiting Single Image Reflection Removal In the Wild [83.42368937164473]
本研究は,実環境におけるシングルイメージリフレクション除去(SIRR)の問題に焦点をあてる。
我々は,様々な現実世界のリフレクションシナリオに高度に適用可能な,高度なリフレクション収集パイプラインを考案した。
野生での反射除去(RRW)と呼ばれる大規模で高品質な反射データセットを開発する。
論文 参考訳(メタデータ) (2023-11-29T02:31:10Z) - ReflectNet -- A Generative Adversarial Method for Single Image
Reflection Suppression [0.6980076213134382]
本稿では,文脈理解モジュールと敵対的学習に基づく単一の画像反射除去手法を提案する。
提案手法は,PSNR と SSIM の観点から,SIR のベンチマークデータセット上で,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2021-05-11T17:33:40Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
本稿では,位置認識型深層学習に基づく単一画像反射除去手法を提案する。
我々は,リフレクション信頼度マップをネットワークの手がかりとして活用し,リフレクション情報を適応的にエンコードする方法を学習する。
位置情報のネットワークへの統合は、反射除去結果の品質を大幅に向上させる。
論文 参考訳(メタデータ) (2020-12-13T19:34:35Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
シングルイメージリフレクション除去(SIRR)のためのリフレクション・アウェア・ガイダンス(RAGNet)を用いた新しい2段階ネットワークを提案する。
RAGは、(i)観測からの反射の効果を緩和するために、(ii)線形結合仮説から逸脱する効果を緩和するための部分畳み込みにおいてマスクを生成するために用いられる。
5つの一般的なデータセットの実験は、最先端のSIRR法と比較して、RAGNetの量的および質的な優位性を実証している。
論文 参考訳(メタデータ) (2020-12-02T03:14:57Z) - Unsupervised Single-Image Reflection Separation Using Perceptual Deep
Image Priors [6.333390830515411]
単一画像のリフレクション分離のための新しい教師なしフレームワークを提案する。
対象画像上の2つのクロスカップリング深部畳み込みネットワークのパラメータを最適化し、2つの排他的背景層と反射層を生成する。
その結果,本手法は単一画像からの反射を除去するための文献において最も近い教師なし手法よりも優れていた。
論文 参考訳(メタデータ) (2020-09-01T21:08:30Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
野生の偏光画像からの反射を除去するための新しい定式化法を提案する。
まず、既存のリフレクション除去データセットの不整合問題を同定する。
我々は100種類以上のガラスを用いた新しいデータセットを構築し、得られた透過画像は入力された混合画像と完全に一致している。
論文 参考訳(メタデータ) (2020-03-28T13:29:31Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
本稿では、上記のアプローチの利点を組み合わせ、その欠点を克服する新しい学習ベースソリューションを提案する。
提案アルゴリズムはディープニューラルネットワークを学習して、複数の入力画像間で強化されたジョイント制約でターゲットを最適化する。
我々のアルゴリズムは実画像上でリアルタイムかつ最先端の反射除去性能で動作する。
論文 参考訳(メタデータ) (2019-12-08T06:10:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。