論文の概要: Utilizing Multi-step Loss for Single Image Reflection Removal
- arxiv url: http://arxiv.org/abs/2412.08582v2
- Date: Fri, 13 Dec 2024 17:11:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 11:42:52.814772
- Title: Utilizing Multi-step Loss for Single Image Reflection Removal
- Title(参考訳): 複数ステップの損失を利用した一方向反射除去
- Authors: Abdelrahman Elnenaey, Marwan Torki,
- Abstract要約: 歪んだイメージは、オブジェクト検出やイメージセグメンテーションといったタスクに悪影響を及ぼす可能性がある。
単一画像を用いた画像反射除去のための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.9208007322096532
- License:
- Abstract: Image reflection removal is crucial for restoring image quality. Distorted images can negatively impact tasks like object detection and image segmentation. In this paper, we present a novel approach for image reflection removal using a single image. Instead of focusing on model architecture, we introduce a new training technique that can be generalized to image-to-image problems, with input and output being similar in nature. This technique is embodied in our multi-step loss mechanism, which has proven effective in the reflection removal task. Additionally, we address the scarcity of reflection removal training data by synthesizing a high-quality, non-linear synthetic dataset called RefGAN using Pix2Pix GAN. This dataset significantly enhances the model's ability to learn better patterns for reflection removal. We also utilize a ranged depth map, extracted from the depth estimation of the ambient image, as an auxiliary feature, leveraging its property of lacking depth estimations for reflections. Our approach demonstrates superior performance on the SIR^2 benchmark and other real-world datasets, proving its effectiveness by outperforming other state-of-the-art models.
- Abstract(参考訳): 画像の反射除去は画質の回復に不可欠である。
歪んだイメージは、オブジェクト検出やイメージセグメンテーションといったタスクに悪影響を及ぼす可能性がある。
本稿では,単一画像を用いた新しい画像反射除去手法を提案する。
モデルアーキテクチャに焦点をあてる代わりに、入力と出力が本質的に類似したイメージ・ツー・イメージ問題に一般化できる新しいトレーニング手法を導入する。
本手法は, 反射除去作業において有効である多段損失機構に具体化されている。
さらに、Pix2Pix GANを用いて、高品質で非線形な合成データセットRefGANを合成することにより、反射除去訓練データの不足に対処する。
このデータセットは、リフレクション除去のためのより良いパターンを学習するモデルの能力を大幅に向上させる。
また、周辺画像の深度推定から抽出した範囲の深度マップを補助的特徴として利用し、反射に対する深度推定の欠如の性質を利用した。
提案手法は,SIR^2ベンチマークや他の実世界のデータセットよりも優れた性能を示し,他の最先端モデルよりも優れた性能を示す。
関連論文リスト
- Towards Flexible Interactive Reflection Removal with Human Guidance [75.38207315080624]
単一の画像反射除去は本質的に不明瞭であり、分離を必要とする反射成分と透過成分の両方が自然な画像統計に従う可能性がある。
既存の手法では、様々な種類の低レベルおよび物理ベースのキューを反射信号の源として利用することでこの問題に対処しようとする。
本稿では,様々な形態のスパース・ヒューマン・ガイダンスを活用するフレキシブル・インタラクティブ・リフレクション・リフレクション・リフレクション・リフレクション・リジェクション・リジェクション・アプローチを提案する。
論文 参考訳(メタデータ) (2024-06-03T17:34:37Z) - A Categorized Reflection Removal Dataset with Diverse Real-world Scenes [54.662456878340215]
我々は、分類され、多様で、現実世界(CDR)に分類された新しい反射除去データセットを構築する。
データセットは様々な環境下で様々なガラスタイプを使用して構築され、多様性が保証される。
現状の反射除去法は, 一般にぼやけた反射に対して良好に機能するが, 他の種類の実世界の反射に対する満足度は得られないことを示す。
論文 参考訳(メタデータ) (2021-08-07T06:56:57Z) - ReflectNet -- A Generative Adversarial Method for Single Image
Reflection Suppression [0.6980076213134382]
本稿では,文脈理解モジュールと敵対的学習に基づく単一の画像反射除去手法を提案する。
提案手法は,PSNR と SSIM の観点から,SIR のベンチマークデータセット上で,最先端の手法よりも優れる。
論文 参考訳(メタデータ) (2021-05-11T17:33:40Z) - Iterative Gradient Encoding Network with Feature Co-Occurrence Loss for
Single Image Reflection Removal [6.370905925442655]
単一画像反射除去のための反復グラデーション符号化ネットワークを提案する。
提案手法は,既存の画像設定に対する反射を良好に除去することができる。
論文 参考訳(メタデータ) (2021-03-29T19:29:29Z) - Location-aware Single Image Reflection Removal [54.93808224890273]
本稿では,位置認識型深層学習に基づく単一画像反射除去手法を提案する。
我々は,リフレクション信頼度マップをネットワークの手がかりとして活用し,リフレクション情報を適応的にエンコードする方法を学習する。
位置情報のネットワークへの統合は、反射除去結果の品質を大幅に向上させる。
論文 参考訳(メタデータ) (2020-12-13T19:34:35Z) - Two-Stage Single Image Reflection Removal with Reflection-Aware Guidance [78.34235841168031]
シングルイメージリフレクション除去(SIRR)のためのリフレクション・アウェア・ガイダンス(RAGNet)を用いた新しい2段階ネットワークを提案する。
RAGは、(i)観測からの反射の効果を緩和するために、(ii)線形結合仮説から逸脱する効果を緩和するための部分畳み込みにおいてマスクを生成するために用いられる。
5つの一般的なデータセットの実験は、最先端のSIRR法と比較して、RAGNetの量的および質的な優位性を実証している。
論文 参考訳(メタデータ) (2020-12-02T03:14:57Z) - Unsupervised Single-Image Reflection Separation Using Perceptual Deep
Image Priors [6.333390830515411]
単一画像のリフレクション分離のための新しい教師なしフレームワークを提案する。
対象画像上の2つのクロスカップリング深部畳み込みネットワークのパラメータを最適化し、2つの排他的背景層と反射層を生成する。
その結果,本手法は単一画像からの反射を除去するための文献において最も近い教師なし手法よりも優れていた。
論文 参考訳(メタデータ) (2020-09-01T21:08:30Z) - Polarized Reflection Removal with Perfect Alignment in the Wild [66.48211204364142]
野生の偏光画像からの反射を除去するための新しい定式化法を提案する。
まず、既存のリフレクション除去データセットの不整合問題を同定する。
我々は100種類以上のガラスを用いた新しいデータセットを構築し、得られた透過画像は入力された混合画像と完全に一致している。
論文 参考訳(メタデータ) (2020-03-28T13:29:31Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
本稿では、上記のアプローチの利点を組み合わせ、その欠点を克服する新しい学習ベースソリューションを提案する。
提案アルゴリズムはディープニューラルネットワークを学習して、複数の入力画像間で強化されたジョイント制約でターゲットを最適化する。
我々のアルゴリズムは実画像上でリアルタイムかつ最先端の反射除去性能で動作する。
論文 参考訳(メタデータ) (2019-12-08T06:10:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。