Assessing YOLACT++ for real time and robust instance segmentation of
medical instruments in endoscopic procedures
- URL: http://arxiv.org/abs/2103.15997v1
- Date: Tue, 30 Mar 2021 00:09:55 GMT
- Title: Assessing YOLACT++ for real time and robust instance segmentation of
medical instruments in endoscopic procedures
- Authors: Juan Carlos Angeles Ceron, Leonardo Chang, Gilberto Ochoa-Ruiz and
Sharib Ali
- Abstract summary: Image-based tracking of laparoscopic instruments plays a fundamental role in computer and robotic-assisted surgeries.
To date, most of the existing models for instance segmentation of medical instruments were based on two-stage detectors.
We propose the addition of attention mechanisms to the YOLACT architecture that allows real-time instance segmentation of instruments.
- Score: 0.5735035463793008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image-based tracking of laparoscopic instruments plays a fundamental role in
computer and robotic-assisted surgeries by aiding surgeons and increasing
patient safety. Computer vision contests, such as the Robust Medical Instrument
Segmentation (ROBUST-MIS) Challenge, seek to encourage the development of
robust models for such purposes, providing large, diverse, and annotated
datasets. To date, most of the existing models for instance segmentation of
medical instruments were based on two-stage detectors, which provide robust
results but are nowhere near to the real-time (5 frames-per-second (fps)at
most). However, in order for the method to be clinically applicable, real-time
capability is utmost required along with high accuracy. In this paper, we
propose the addition of attention mechanisms to the YOLACT architecture that
allows real-time instance segmentation of instrument with improved accuracy on
the ROBUST-MIS dataset. Our proposed approach achieves competitive performance
compared to the winner ofthe 2019 ROBUST-MIS challenge in terms of robustness
scores,obtaining 0.313 MI_DSC and 0.338 MI_NSD, while achieving real-time
performance (37 fps)
Related papers
- Enhancing Precision in Tactile Internet-Enabled Remote Robotic Surgery: Kalman Filter Approach [0.0]
This paper presents a Kalman Filter (KF) based computationally efficient position estimation method.
The study also assume no prior knowledge of the dynamic system model of the robotic arm system.
We investigate the effectiveness of KF to determine the position of the Patient Side Manipulator (PSM) under simulated network conditions.
arXiv Detail & Related papers (2024-06-06T20:56:53Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - Syn3DWound: A Synthetic Dataset for 3D Wound Bed Analysis [28.960666848416274]
This paper introduces Syn3DWound, an open-source dataset of high-fidelity simulated wounds with 2D and 3D annotations.
We propose a benchmarking framework for automated 3D morphometry analysis and 2D/3D wound segmentation.
arXiv Detail & Related papers (2023-11-27T13:59:53Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
Time-series learning is the bread and butter of data-driven *clinical decision support*
Clairvoyance proposes a unified, end-to-end, autoML-friendly pipeline that serves as a software toolkit.
Clairvoyance is the first to demonstrate viability of a comprehensive and automatable pipeline for clinical time-series ML.
arXiv Detail & Related papers (2023-10-28T12:08:03Z) - Sculpting Efficiency: Pruning Medical Imaging Models for On-Device
Inference [13.403419873964422]
We highlight the excess operational complexity in a suboptimally configured ML model from prior work.
Our results show a compression rate of 1148x with minimal loss in quality.
We consider avenues for future research in streamlining for clinical researchers to develop models quicker and better suited for real-world use.
arXiv Detail & Related papers (2023-09-10T17:34:14Z) - Towards quantitative precision for ECG analysis: Leveraging state space
models, self-supervision and patient metadata [2.0777058026628583]
We investigate three elements aimed at improving the quantitative accuracy of automatic ECG analysis systems.
First, we exploit structured state space models (SSMs) to capture long-term dependencies in time series data.
Secondly, we demonstrate that self-supervised learning using contrastive predictive coding can further improve the performance of SSMs.
Finally, we incorporate basic demographic metadata alongside the ECG signal as input.
arXiv Detail & Related papers (2023-08-29T13:25:26Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Real-time Instance Segmentation of Surgical Instruments using Attention
and Multi-scale Feature Fusion [0.5735035463793008]
Deep learning gives us the opportunity to learn complex environment from large surgery scene environments.
In this paper, we use a light-weight single stage segmentation model complemented with a convolutional block attention module.
Our approach out-performed top team performances in the ROBUST-MIS challenge with over 44% improvement on both area-based metric MI_DSC and distance-based metric MI_NSD.
arXiv Detail & Related papers (2021-11-09T02:22:01Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.