Sculpting Efficiency: Pruning Medical Imaging Models for On-Device
Inference
- URL: http://arxiv.org/abs/2309.05090v2
- Date: Thu, 2 Nov 2023 00:15:19 GMT
- Title: Sculpting Efficiency: Pruning Medical Imaging Models for On-Device
Inference
- Authors: Sudarshan Sreeram and Bernhard Kainz
- Abstract summary: We highlight the excess operational complexity in a suboptimally configured ML model from prior work.
Our results show a compression rate of 1148x with minimal loss in quality.
We consider avenues for future research in streamlining for clinical researchers to develop models quicker and better suited for real-world use.
- Score: 13.403419873964422
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Leveraging ML advancements to augment healthcare systems can improve patient
outcomes. Yet, uninformed engineering decisions in early-stage research
inadvertently hinder the feasibility of such solutions for high-throughput,
on-device inference, particularly in settings involving legacy hardware and
multi-modal gigapixel images. Through a preliminary case study concerning
segmentation in cardiology, we highlight the excess operational complexity in a
suboptimally configured ML model from prior work and demonstrate that it can be
sculpted away using pruning to meet deployment criteria. Our results show a
compression rate of 1148x with minimal loss in quality (~4%) and, at higher
rates, achieve faster inference on a CPU than the GPU baseline, stressing the
need to consider task complexity and architectural details when using
off-the-shelf models. With this, we consider avenues for future research in
streamlining workflows for clinical researchers to develop models quicker and
better suited for real-world use.
Related papers
- Structured Model Pruning for Efficient Inference in Computational Pathology [2.9687381456164004]
We develop a methodology for pruning the widely used U-Net-style architectures in biomedical imaging.
We empirically demonstrate that pruning can compress models by at least 70% with a negligible drop in performance.
arXiv Detail & Related papers (2024-04-12T22:05:01Z) - Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation [113.5002649181103]
Training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology.
For training, we assemble a large dataset of over 697 thousand radiology image-text pairs.
For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation.
The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
arXiv Detail & Related papers (2024-03-12T18:12:02Z) - Performance Analysis of UNet and Variants for Medical Image Segmentation [1.5410557873153836]
This study aims to explore the application of deep learning models, particularly focusing on the UNet architecture and its variants, in medical image segmentation.
The findings reveal that the standard UNet, when extended with a deep network layer, is a proficient medical image segmentation model.
The Res-UNet and Attention Res-UNet architectures demonstrate smoother convergence and superior performance, particularly when handling fine image details.
arXiv Detail & Related papers (2023-09-22T17:20:40Z) - Sparse learned kernels for interpretable and efficient medical time series processing [19.5212988158778]
Deep learning methods were compute-intensive and lacked interpretability.
We propose Sparse Mixture of Learned Kernels (SMoLK), an interpretable architecture for medical time-series signals.
SMoLK learns a set of lightweight flexible kernels that form a single-layer sparse neural network.
arXiv Detail & Related papers (2023-07-06T18:11:58Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
We propose a Competence-based Multimodal Curriculum Learning framework ( CMCL) to alleviate the data bias and make best use of available data.
Specifically, CMCL simulates the learning process of radiologists and optimize the model in a step by step manner.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that CMCL can be incorporated into existing models to improve their performance.
arXiv Detail & Related papers (2022-06-24T08:16:01Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - A comparative study of various Deep Learning techniques for
spatio-temporal Super-Resolution reconstruction of Forced Isotropic Turbulent
flows [0.45935798913942893]
This study performs super-resolution analysis on turbulent flow fields spatially and temporally using various state-of-the-art machine learning techniques.
The dataset used for this study is extracted from the 'isotropic 1024 coarse' dataset which is a part of Johns Hopkins Turbulence databases.
arXiv Detail & Related papers (2021-07-07T17:16:55Z) - Interpretable Hyperspectral AI: When Non-Convex Modeling meets
Hyperspectral Remote Sensing [57.52865154829273]
Hyperspectral imaging, also known as image spectrometry, is a landmark technique in geoscience remote sensing (RS)
In the past decade efforts have been made to process analyze these hyperspectral (HS) products mainly by means of seasoned experts.
For this reason, it is urgent to develop more intelligent and automatic approaches for various HS RS applications.
arXiv Detail & Related papers (2021-03-02T03:32:10Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
We propose a novel end-to-end GAN architecture that can generate high-resolution 3D images.
We achieve this goal by using different configurations between training and inference.
Experiments on 3D thorax CT and brain MRI demonstrate that our approach outperforms state of the art in image generation.
arXiv Detail & Related papers (2020-08-05T02:33:04Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
Most applications rely on accurate real-time segmentation of high-resolution surgical images.
We design a light-weight and highly-efficient deep residual architecture which is tuned to perform real-time inference of high-resolution images.
arXiv Detail & Related papers (2020-07-08T21:38:29Z) - AP-MTL: Attention Pruned Multi-task Learning Model for Real-time
Instrument Detection and Segmentation in Robot-assisted Surgery [23.33984309289549]
Training a real-time robotic system for the detection and segmentation of high-resolution images provides a challenging problem with the limited computational resource.
We develop a novel end-to-end trainable real-time Multi-Task Learning model with weight-shared encoder and task-aware detection and segmentation decoders.
Our model significantly outperforms state-of-the-art segmentation and detection models, including best-performed models in the challenge.
arXiv Detail & Related papers (2020-03-10T14:24:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.