Training Sparse Neural Network by Constraining Synaptic Weight on Unit
Lp Sphere
- URL: http://arxiv.org/abs/2103.16013v1
- Date: Tue, 30 Mar 2021 01:02:31 GMT
- Title: Training Sparse Neural Network by Constraining Synaptic Weight on Unit
Lp Sphere
- Authors: Weipeng Li, Xiaogang Yang, Chuanxiang Li, Ruitao Lu, Xueli Xie
- Abstract summary: constraining the synaptic weights on unit Lp-sphere enables the flexibly control of the sparsity with p.
Our approach is validated by experiments on benchmark datasets covering a wide range of domains.
- Score: 2.429910016019183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse deep neural networks have shown their advantages over dense models
with fewer parameters and higher computational efficiency. Here we demonstrate
constraining the synaptic weights on unit Lp-sphere enables the flexibly
control of the sparsity with p and improves the generalization ability of
neural networks. Firstly, to optimize the synaptic weights constrained on unit
Lp-sphere, the parameter optimization algorithm, Lp-spherical gradient descent
(LpSGD) is derived from the augmented Empirical Risk Minimization condition,
which is theoretically proved to be convergent. To understand the mechanism of
how p affects Hoyer's sparsity, the expectation of Hoyer's sparsity under the
hypothesis of gamma distribution is given and the predictions are verified at
various p under different conditions. In addition, the "semi-pruning" and
threshold adaptation are designed for topology evolution to effectively screen
out important connections and lead the neural networks converge from the
initial sparsity to the expected sparsity. Our approach is validated by
experiments on benchmark datasets covering a wide range of domains. And the
theoretical analysis pave the way to future works on training sparse neural
networks with constrained optimization.
Related papers
- Parallel-in-Time Solutions with Random Projection Neural Networks [0.07282584715927627]
This paper considers one of the fundamental parallel-in-time methods for the solution of ordinary differential equations, Parareal, and extends it by adopting a neural network as a coarse propagator.
We provide a theoretical analysis of the convergence properties of the proposed algorithm and show its effectiveness for several examples, including Lorenz and Burgers' equations.
arXiv Detail & Related papers (2024-08-19T07:32:41Z) - Stochastic Gradient Descent for Two-layer Neural Networks [2.0349026069285423]
This paper presents a study on the convergence rates of the descent (SGD) algorithm when applied to overparameterized two-layer neural networks.
Our approach combines the Tangent Kernel (NTK) approximation with convergence analysis in the Reproducing Kernel Space (RKHS) generated by NTK.
Our research framework enables us to explore the intricate interplay between kernel methods and optimization processes, shedding light on the dynamics and convergence properties of neural networks.
arXiv Detail & Related papers (2024-07-10T13:58:57Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Spike-and-slab shrinkage priors for structurally sparse Bayesian neural networks [0.16385815610837165]
Sparse deep learning addresses challenges by recovering a sparse representation of the underlying target function.
Deep neural architectures compressed via structured sparsity provide low latency inference, higher data throughput, and reduced energy consumption.
We propose structurally sparse Bayesian neural networks which prune excessive nodes with (i) Spike-and-Slab Group Lasso (SS-GL), and (ii) Spike-and-Slab Group Horseshoe (SS-GHS) priors.
arXiv Detail & Related papers (2023-08-17T17:14:18Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
We construct an exact power-series representation of the neural network in a finite neighborhood of the initial weights.
We prove that, regardless of width, the training sequence produced by gradient descent can be exactly replicated by regularized sequential learning.
arXiv Detail & Related papers (2023-02-01T03:18:07Z) - Layer Adaptive Node Selection in Bayesian Neural Networks: Statistical
Guarantees and Implementation Details [0.5156484100374059]
Sparse deep neural networks have proven to be efficient for predictive model building in large-scale studies.
We propose a Bayesian sparse solution using spike-and-slab Gaussian priors to allow for node selection during training.
We establish the fundamental result of variational posterior consistency together with the characterization of prior parameters.
arXiv Detail & Related papers (2021-08-25T00:48:07Z) - A Dynamical View on Optimization Algorithms of Overparameterized Neural
Networks [23.038631072178735]
We consider a broad class of optimization algorithms that are commonly used in practice.
As a consequence, we can leverage the convergence behavior of neural networks.
We believe our approach can also be extended to other optimization algorithms and network theory.
arXiv Detail & Related papers (2020-10-25T17:10:22Z) - Finite Versus Infinite Neural Networks: an Empirical Study [69.07049353209463]
kernel methods outperform fully-connected finite-width networks.
Centered and ensembled finite networks have reduced posterior variance.
Weight decay and the use of a large learning rate break the correspondence between finite and infinite networks.
arXiv Detail & Related papers (2020-07-31T01:57:47Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
We introduce a new theoretical framework to analyze deep learning optimization with connection to its generalization error.
Existing frameworks such as mean field theory and neural tangent kernel theory for neural network optimization analysis typically require taking limit of infinite width of the network to show its global convergence.
arXiv Detail & Related papers (2020-07-11T18:19:50Z) - Neural Proximal/Trust Region Policy Optimization Attains Globally
Optimal Policy [119.12515258771302]
We show that a variant of PPOO equipped with over-parametrization converges to globally optimal networks.
The key to our analysis is the iterate of infinite gradient under a notion of one-dimensional monotonicity, where the gradient and are instant by networks.
arXiv Detail & Related papers (2019-06-25T03:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.