Convolution-weighting method for the physics-informed neural network: A Primal-Dual Optimization Perspective
- URL: http://arxiv.org/abs/2506.19805v2
- Date: Fri, 18 Jul 2025 09:09:51 GMT
- Title: Convolution-weighting method for the physics-informed neural network: A Primal-Dual Optimization Perspective
- Authors: Chenhao Si, Ming Yan,
- Abstract summary: Physics-informed neural networks (PINNs) are extensively employed to solve partial differential equations (PDEs)<n>PINNs are typically optimized using a finite set of points, which poses significant challenges in guaranteeing their convergence and accuracy.<n>We propose a new weighting scheme that will adaptively change the weights to the loss functions from isolated points to their continuous neighborhood regions.
- Score: 14.65008276932511
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) are extensively employed to solve partial differential equations (PDEs) by ensuring that the outputs and gradients of deep learning models adhere to the governing equations. However, constrained by computational limitations, PINNs are typically optimized using a finite set of points, which poses significant challenges in guaranteeing their convergence and accuracy. In this study, we proposed a new weighting scheme that will adaptively change the weights to the loss functions from isolated points to their continuous neighborhood regions. The empirical results show that our weighting scheme can reduce the relative $L^2$ errors to a lower value.
Related papers
- ProPINN: Demystifying Propagation Failures in Physics-Informed Neural Networks [71.02216400133858]
Physics-informed neural networks (PINNs) have earned high expectations in solving partial differential equations (PDEs)<n>Previous research observed the propagation failure phenomenon of PINNs.<n>This paper provides a formal and in-depth study of propagation failure and its root cause.
arXiv Detail & Related papers (2025-02-02T13:56:38Z) - SetPINNs: Set-based Physics-informed Neural Networks [31.193471532024407]
We introduce SetPINNs, a framework that effectively captures local dependencies.<n>We partition the domain into sets to model local dependencies while simultaneously enforcing physical laws.<n>Experiments on synthetic and real-world tasks show improved accuracy, efficiency, and robustness.
arXiv Detail & Related papers (2024-09-30T11:41:58Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
This paper proposes a meshless deep learning algorithm, enriched physics-informed neural networks (EPINNs) to solve dynamic Poisson-Nernst-Planck (PNP) equations.
The EPINNs takes the traditional physics-informed neural networks as the foundation framework, and adds the adaptive loss weight to balance the loss functions.
Numerical results indicate that the new method has better applicability than traditional numerical methods in solving such coupled nonlinear systems.
arXiv Detail & Related papers (2024-02-01T02:57:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
Physics-informed neural networks (PINNs) incorporate physical knowledge from the problem domain as a soft constraint on the loss function.
We study the impact of the location of the collocation points on the trainability of these models.
We propose a novel adaptive collocation scheme which progressively allocates more collocation points to areas where the model is making higher errors.
arXiv Detail & Related papers (2022-07-08T18:17:06Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
Physics-Informed Neural Networks (PINNs) are powerful approximators of solutions to nonlinear partial differential equations (PDEs)
We propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs)
We demonstrate through various numerical experiments that AL-PINNs yield a much smaller relative error compared with that of state-of-the-art adaptive loss-balancing algorithms.
arXiv Detail & Related papers (2022-04-29T08:33:11Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Robust Learning of Physics Informed Neural Networks [2.86989372262348]
Physics-informed Neural Networks (PINNs) have been shown to be effective in solving partial differential equations.
This paper shows that a PINN can be sensitive to errors in training data and overfit itself in dynamically propagating these errors over the domain of the solution of the PDE.
arXiv Detail & Related papers (2021-10-26T00:10:57Z) - Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism [1.6114012813668932]
Physics-Informed Neural Networks (PINNs) have emerged as a promising application of deep neural networks to the numerical solution of nonlinear partial differential equations (PDEs)
We propose a fundamentally new way to train PINNs adaptively, where the adaptation weights are fully trainable and applied to each training point individually.
In numerical experiments with several linear and nonlinear benchmark problems, the SA-PINN outperformed other state-of-the-art PINN algorithm in L2 error.
arXiv Detail & Related papers (2020-09-07T04:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.