論文の概要: Self-Guided and Cross-Guided Learning for Few-Shot Segmentation
- arxiv url: http://arxiv.org/abs/2103.16129v1
- Date: Tue, 30 Mar 2021 07:36:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:57:44.166548
- Title: Self-Guided and Cross-Guided Learning for Few-Shot Segmentation
- Title(参考訳): Few-Shotセグメンテーションのためのセルフガイドとクロスガイド学習
- Authors: Bingfeng Zhang, Jimin Xiao and Terry Qin
- Abstract要約: 単発セグメンテーションのための自己誘導学習手法を提案する。
注釈付き支持画像の初期予測を行うことにより、被覆および検出された前景領域を一次および補助支持ベクトルに符号化する。
プライマリサポートベクターと補助サポートベクターの両方を集約することで、クエリイメージ上でより良いセグメンテーション性能が得られます。
- 参考スコア(独自算出の注目度): 12.899804391102435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot segmentation has been attracting a lot of attention due to its
effectiveness to segment unseen object classes with a few annotated samples.
Most existing approaches use masked Global Average Pooling (GAP) to encode an
annotated support image to a feature vector to facilitate query image
segmentation. However, this pipeline unavoidably loses some discriminative
information due to the average operation. In this paper, we propose a simple
but effective self-guided learning approach, where the lost critical
information is mined. Specifically, through making an initial prediction for
the annotated support image, the covered and uncovered foreground regions are
encoded to the primary and auxiliary support vectors using masked GAP,
respectively. By aggregating both primary and auxiliary support vectors, better
segmentation performances are obtained on query images. Enlightened by our
self-guided module for 1-shot segmentation, we propose a cross-guided module
for multiple shot segmentation, where the final mask is fused using predictions
from multiple annotated samples with high-quality support vectors contributing
more and vice versa. This module improves the final prediction in the inference
stage without re-training. Extensive experiments show that our approach
achieves new state-of-the-art performances on both PASCAL-5i and COCO-20i
datasets.
- Abstract(参考訳): 少数ショットのセグメンテーションは、いくつかのアノテーション付きサンプルで未認識のオブジェクトクラスをセグメンテーションする効果があるため、多くの注目を集めている。
既存のほとんどのアプローチでは、マスク付きグローバル平均プール(GAP)を使用して、注釈付きサポートイメージを特徴ベクトルにエンコードし、クエリイメージのセグメンテーションを容易にする。
しかし、このパイプラインは、平均的な操作のために差別的な情報を失うことは避けられない。
本稿では,失われた臨界情報をマイニングする,シンプルで効果的な自己指導型学習手法を提案する。
具体的には、注釈付き支持画像の初期予測を行うことにより、被被覆領域と未発見領域とをマスキングGAPを用いてそれぞれ一次および補助支持ベクトルに符号化する。
一次支援ベクトルと補助支援ベクトルの両方を集約することにより、クエリ画像上でより良いセグメンテーション性能が得られる。
1ショットセグメンテーションのための自己誘導モジュールにより,複数ショットセグメンテーションのためのクロスガイドモジュールを提案する。
このモジュールは推論段階での最終的な予測を再トレーニングせずに改善する。
大規模実験により,PASCAL-5iとCOCO-20iの両方のデータセット上での最先端性能が得られた。
関連論文リスト
- Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
少ないショットセグメンテーションは、注釈付き画像のみを提供する新しいタスクに迅速に適応できるセグメンテーションモデルをトレーニングすることを目的としている。
本稿では,対象オブジェクトの相対的サイズに基づいて,サポートイメージを拡大するIDA戦略を提案する。
提案したIDAは,サポートセットの多様性を効果的に向上し,サポートイメージとクエリイメージ間の分散一貫性を促進する。
論文 参考訳(メタデータ) (2024-01-18T10:29:10Z) - Self-supervised Few-shot Learning for Semantic Segmentation: An
Annotation-free Approach [4.855689194518905]
Few-shot semantic segmentation (FSS)は、医用画像解析の分野で大きな可能性を秘めている。
既存のFSS技術は注釈付きセマンティッククラスに大きく依存しており、医療画像には適さない。
本稿では,アノテーションに依存しない新たな自己教師型FSSフレームワークを提案する。その代わりに,支援画像から得られる固有ベクトルを利用して,クエリマスクを適応的に推定する。
論文 参考訳(メタデータ) (2023-07-26T18:33:30Z) - Reflection Invariance Learning for Few-shot Semantic Segmentation [53.20466630330429]
Few-shot semantic segmentation (FSS) は、いくつかのアノテーション付きサポートイメージを持つクエリイメージにおいて、目に見えないクラスのオブジェクトをセグメントすることを目的としている。
本稿では,マルチビューマッチング方式でリフレクション不変性をマイニングするための,新しい数ショットセグメンテーションフレームワークを提案する。
PASCAL-$5textiti$とCOCO-$20textiti$データセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-01T15:14:58Z) - Progressively Dual Prior Guided Few-shot Semantic Segmentation [57.37506990980975]
Few-shotのセマンティックセマンティックセマンティクスタスクは、いくつかのアノテーション付きサポートサンプルを使用して、クエリイメージのセマンティクスを実行することを目的としている。
本稿では,先進的に2重にガイドされた数発のセマンティックセマンティックセグメンテーションネットワークを提案する。
論文 参考訳(メタデータ) (2022-11-20T16:19:47Z) - Beyond the Prototype: Divide-and-conquer Proxies for Few-shot
Segmentation [63.910211095033596]
少ないショットのセグメンテーションは、少数の濃密なラベル付けされたサンプルのみを与えられた、目に見えないクラスオブジェクトをセグメンテーションすることを目的としている。
分割・分散の精神において, 単純かつ多目的な枠組みを提案する。
提案手法は、DCP(disvision-and-conquer proxies)と呼ばれるもので、適切な信頼性のある情報の開発を可能にする。
論文 参考訳(メタデータ) (2022-04-21T06:21:14Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation Method (TRFS)
我々のモデルは,グローバル・エンハンスメント・モジュール(GEM)とローカル・エンハンスメント・モジュール(LEM)の2つのモジュールから構成される。
論文 参考訳(メタデータ) (2021-08-04T20:09:21Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shotのセグメンテーションは、アノテートされたサンプルがほとんどない各画像ピクセルにカテゴリラベルを割り当てることを目的としている。
既存のメタラーニング手法では, 画像から抽出した視覚的特徴を埋め込み空間に埋め込むと, カテゴリー別識別記述子の生成に失敗する傾向にある。
本稿では,複数のエピソードにまたがる潜在特徴の分布を,自己分割方式に基づいて動的に調整する適応型フレームワークチューニングを提案する。
論文 参考訳(メタデータ) (2020-04-12T03:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。