論文の概要: Active Learning for Deep Object Detection via Probabilistic Modeling
- arxiv url: http://arxiv.org/abs/2103.16130v1
- Date: Tue, 30 Mar 2021 07:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:57:22.019013
- Title: Active Learning for Deep Object Detection via Probabilistic Modeling
- Title(参考訳): 確率モデリングによる深部物体検出のための能動学習
- Authors: Jiwoong Choi, Ismail Elezi, Hyuk-Jae Lee, Clement Farabet, Jose M.
Alvarez
- Abstract要約: オブジェクト検出のための新しい深層アクティブラーニング手法を提案する。
提案手法は,各局所化および分類ヘッドの出力に対する確率分布を推定する混合密度ネットワークに依存する。
本手法では,両頭部の2種類の不確実性を集約したスコアリング関数を用いて,各画像のインフォラティブネススコアを求める。
- 参考スコア(独自算出の注目度): 27.195742892250916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Active learning aims to reduce labeling costs by selecting only the most
informative samples on a dataset. Few existing works have addressed active
learning for object detection. Most of these methods are based on multiple
models or are straightforward extensions of classification methods, hence
estimate an image's informativeness using only the classification head. In this
paper, we propose a novel deep active learning approach for object detection.
Our approach relies on mixture density networks that estimate a probabilistic
distribution for each localization and classification head's output. We
explicitly estimate the aleatoric and epistemic uncertainty in a single forward
pass of a single model. Our method uses a scoring function that aggregates
these two types of uncertainties for both heads to obtain every image's
informativeness score. We demonstrate the efficacy of our approach in PASCAL
VOC and MS-COCO datasets. Our approach outperforms single-model based methods
and performs on par with multi-model based methods at a fraction of the
computing cost.
- Abstract(参考訳): アクティブラーニングはデータセットの最も有益なサンプルのみを選択することで、ラベリングコストを削減することを目的としている。
オブジェクト検出のためのアクティブラーニングに取り組んだ既存の作品はほとんどない。
これらの手法の多くは複数のモデルに基づいており、分類手法の直接的な拡張であり、したがって分類ヘッドのみを用いて画像の情報性を推定する。
本稿では,物体検出のための新しい深層アクティブ学習手法を提案する。
提案手法は,各局所化および分類ヘッドの出力に対する確率分布を推定する混合密度ネットワークに依存する。
単一モデルの1つの前方通過における動脈およびてんかんの不確かさを明示的に推定する。
本手法では,両頭部の2種類の不確かさを集約したスコアリング関数を用いて,各画像の情報度スコアを求める。
PASCAL VOCおよびMS-COCOデータセットにおけるアプローチの有効性を示す。
提案手法は単一モデルに基づく手法より優れ,計算コストのごく一部でマルチモデルに基づく手法と同等に動作する。
関連論文リスト
- ConceptDrift: Uncovering Biases through the Lens of Foundation Models [5.025665239455297]
ceptDriftは、人間の事前知識なしでデータセット内のバイアスを自動的に識別できる。
本稿では,従来の作業のギャップを埋める2つのバイアス識別評価プロトコルを提案し,本手法がSoTA法よりも大幅に改善されていることを示す。
我々の手法は単一のモダリティに縛られず、画像(Waterbirds, CelebA, ImageNet)とテキストデータセット(CivilComments)の両方で実証的に検証する。
論文 参考訳(メタデータ) (2024-10-24T17:59:16Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
我々は、マルチモーダルデータのための因果グラフにおいて、共同創設者から生じるバイアスを研究する。
ロバストな予測機能は、モデルがアウト・オブ・ディストリビューションデータに一般化するのに役立つ多様な情報を含んでいる。
これらの特徴を共同設立者表現として使用し、因果理論によって動機づけられた手法を用いてモデルからバイアスを取り除く。
論文 参考訳(メタデータ) (2023-11-28T16:46:14Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
本稿では,オブジェクト検出のための平均APガイド型アクティブラーニングについて紹介する。
MGRALは、予測されたモデル出力変化の概念を深層検知ネットワークの情報性として活用する新しいアプローチである。
提案手法は,物体検出のための強化学習に基づく能動学習における新たなパラダイムを確立し,高い性能を示す。
論文 参考訳(メタデータ) (2023-10-12T14:59:22Z) - DST-Det: Simple Dynamic Self-Training for Open-Vocabulary Object Detection [72.25697820290502]
この研究は、ゼロショット分類によって潜在的に新しいクラスを特定するための単純かつ効率的な戦略を導入する。
このアプローチは、アノテーションやデータセット、再学習を必要とせずに、新しいクラスのリコールと精度を高めるセルフトレーニング戦略として言及する。
LVIS、V3Det、COCOを含む3つのデータセットに対する実証的な評価は、ベースラインのパフォーマンスを大幅に改善したことを示している。
論文 参考訳(メタデータ) (2023-10-02T17:52:24Z) - Towards General and Efficient Active Learning [20.888364610175987]
アクティブラーニングは、限られたアノテーション予算を利用するために最も有益なサンプルを選択することを目的としている。
本稿では,新しい汎用能動学習法(GEAL)を提案する。
提案手法は,同一モデルの単一パス推定を用いて,異なるデータセット上でデータ選択処理を行うことができる。
論文 参考訳(メタデータ) (2021-12-15T08:35:28Z) - Label, Verify, Correct: A Simple Few Shot Object Detection Method [93.84801062680786]
トレーニングセットから高品質な擬似アノテーションを抽出するための簡単な擬似ラベリング手法を提案する。
擬似ラベリングプロセスの精度を向上させるための2つの新しい手法を提案する。
提案手法は,既存手法と比較して,最先端ないし第2の性能を実現する。
論文 参考訳(メタデータ) (2021-12-10T18:59:06Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - An Effective Baseline for Robustness to Distributional Shift [5.627346969563955]
ディープラーニングシステムの安全なデプロイには,トレーニング中に見られるものと異なる入力のカテゴリに直面した場合,確実な予測を控えることが重要な要件である。
本論文では, 吸収の原理を用いた分布異常検出の簡便かつ高効率な手法を提案する。
論文 参考訳(メタデータ) (2021-05-15T00:46:11Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
少数ショットコモンオブジェクトローカライゼーション(COL)と少数ショット弱監視オブジェクト検出(WSOD)のための確率論的多重インスタンス学習手法を提案する。
本モデルでは,新しいオブジェクトの分布を同時に学習し,期待-最大化ステップにより局所化する。
提案手法は, 単純であるにもかかわらず, 少数のCOLとWSOD, 大規模WSODタスクにおいて, 高いベースラインを達成できることを示す。
論文 参考訳(メタデータ) (2021-03-25T22:34:16Z) - Consistency-based Active Learning for Object Detection [10.794744492493262]
アクティブラーニングは、限られた予算で最も情報に富んだサンプルを選択することで、タスクモデルの性能を向上させることを目的としている。
本研究では,オリジナルデータと拡張データとの一貫性を十分に探究する,オブジェクト検出のための効果的な一貫性に基づくアクティブラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-03-18T17:00:34Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
2つの新しい構成要素からなるプロトタイプ中心型注意学習(pal)モデル。
まず,従来のクエリ中心学習目標を補完するために,プロトタイプ中心のコントラスト学習損失を導入する。
第二に、PALは注意深いハイブリッド学習機構を統合しており、アウトレーヤの負の影響を最小限に抑えることができる。
論文 参考訳(メタデータ) (2021-01-20T11:48:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。