論文の概要: Few-Shot Object Detection with Sparse Context Transformers
- arxiv url: http://arxiv.org/abs/2402.09315v1
- Date: Wed, 14 Feb 2024 17:10:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 14:34:19.661048
- Title: Few-Shot Object Detection with Sparse Context Transformers
- Title(参考訳): スパースコンテクストトランスフォーマーを用いた少数ショット物体検出
- Authors: Jie Mei, Mingyuan Jiu, Hichem Sahbi, Xiaoheng Jiang, Mingliang Xu
- Abstract要約: 少ないショット検出は、少ないラベル付きデータでトレーニングされたモデルを使用してオブジェクトをローカライズするパターン認識における主要なタスクである。
本稿では,ソース領域におけるオブジェクトの知識を効果的に活用し,対象領域内の少数のトレーニング画像からスパースコンテキストを自動的に学習する新しいスパースコンテキスト変換器を提案する。
提案手法を2つの難易度オブジェクト検出ベンチマークで評価し,提案手法が関連する最先端技術と比較して競合性能を得ることを示す実験結果を得た。
- 参考スコア(独自算出の注目度): 37.106378859592965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot detection is a major task in pattern recognition which seeks to
localize objects using models trained with few labeled data. One of the
mainstream few-shot methods is transfer learning which consists in pretraining
a detection model in a source domain prior to its fine-tuning in a target
domain. However, it is challenging for fine-tuned models to effectively
identify new classes in the target domain, particularly when the underlying
labeled training data are scarce. In this paper, we devise a novel sparse
context transformer (SCT) that effectively leverages object knowledge in the
source domain, and automatically learns a sparse context from only few training
images in the target domain. As a result, it combines different relevant clues
in order to enhance the discrimination power of the learned detectors and
reduce class confusion. We evaluate the proposed method on two challenging
few-shot object detection benchmarks, and empirical results show that the
proposed method obtains competitive performance compared to the related
state-of-the-art.
- Abstract(参考訳): 少ないショット検出は、少ないラベル付きデータでトレーニングされたモデルを使用してオブジェクトをローカライズするパターン認識における主要なタスクである。
主流の少数ショット手法の1つは、ターゲットドメインの微調整の前にソースドメインで検出モデルを事前訓練するトランスファーラーニングである。
しかし、特に基礎となるラベル付きトレーニングデータが不足している場合には、微調整モデルがターゲットドメイン内の新しいクラスを効果的に識別することは困難である。
本稿では、ソース領域におけるオブジェクト知識を効果的に活用する新しいスパースコンテキスト変換器(SCT)を考案し、ターゲット領域内の少数のトレーニング画像からスパースコンテキストを自動的に学習する。
結果として、学習した検出器の識別能力を高め、クラス混乱を低減するために、異なる関連する手がかりを組み合わせる。
提案手法を2つの難易度オブジェクト検出ベンチマークで評価し,提案手法が関連する最先端技術と比較して競合性能を得ることを示す実験結果を得た。
関連論文リスト
- Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - Identification of Novel Classes for Improving Few-Shot Object Detection [12.013345715187285]
Few-shot Object Detection (FSOD) メソッドは、クラス毎に少数のトレーニングサンプルのみを使用して、堅牢なオブジェクト検出を実現することで、改善を提供する。
我々は、FSOD性能を向上させるためのトレーニング中に、未ラベルの新規物体を正のサンプルとして検出し、利用するための半教師付きアルゴリズムを開発した。
実験の結果,本手法は既存のSOTA FSOD法よりも有効であり,優れた結果が得られた。
論文 参考訳(メタデータ) (2023-03-18T14:12:52Z) - CLIP the Gap: A Single Domain Generalization Approach for Object
Detection [60.20931827772482]
単一ドメインの一般化(Single Domain Generalization)は、単一のソースドメイン上でモデルをトレーニングすることで、目に見えないターゲットドメインに一般化する問題に取り組む。
本稿では、事前学習された視覚言語モデルを用いて、テキストプロンプトを介して意味領域の概念を導入することを提案する。
本手法は,検出器のバックボーンから抽出した特徴に作用する意味的拡張戦略と,テキストに基づく分類損失によって実現される。
論文 参考訳(メタデータ) (2023-01-13T12:01:18Z) - Cross Domain Object Detection by Target-Perceived Dual Branch
Distillation [49.68119030818388]
クロスドメインオブジェクト検出は、現実的で挑戦的なタスクです。
本稿では,TDD(Target-perceived Dual-branch Distillation)フレームワークを提案する。
私たちのTDDは、すべてのベンチマークで最先端のメソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-05-03T03:51:32Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
画像レベルのコントラスト表現学習は、伝達学習の汎用モデルとして非常に有効であることが証明されている。
我々は、これは準最適である可能性があり、従って、自己教師付きプレテキストタスクと下流タスクのアライメントを促進する設計原則を提唱する。
Selective Object Contrastive Learning (SoCo) と呼ばれる本手法は,COCO検出における伝達性能の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-04T17:59:52Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
インスタンスローカリゼーションと呼ばれる,新たな自己監視型プリテキストタスクを提案する。
境界ボックスを事前学習に組み込むことで、より優れたタスクアライメントとアーキテクチャアライメントが促進されることを示す。
実験結果から, オブジェクト検出のための最先端の転送学習結果が得られた。
論文 参考訳(メタデータ) (2021-02-16T17:58:57Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - Context-Transformer: Tackling Object Confusion for Few-Shot Detection [0.0]
本稿では,簡潔なディープトランスフレームワークにおけるコンテキスト変換器を提案する。
Context-Transformerは、ソースドメインオブジェクトの知識をガイダンスとして効果的に活用することができる。
これらのリレーショナルな手がかりを適応的に統合して、検出器の識別力を高めることができる。
論文 参考訳(メタデータ) (2020-03-16T16:17:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。