論文の概要: SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised
Image-to-Image Translation
- arxiv url: http://arxiv.org/abs/2103.16219v1
- Date: Tue, 30 Mar 2021 10:03:07 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 15:16:19.559164
- Title: SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised
Image-to-Image Translation
- Title(参考訳): SPatchGAN:教師なし画像翻訳のための統計的特徴量に基づく判別器
- Authors: Xuning Shao, Weidong Zhang
- Abstract要約: 教師なし画像画像変換では,個々のパッチではなく,統計的特徴に着目した識別器アーキテクチャを提案する。
提案手法は, セルフィー対アニム, 男性対女性, メガネの除去など, 様々な課題において, 既存の最先端モデルに勝ることを示す。
- 参考スコア(独自算出の注目度): 4.466402706561989
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For unsupervised image-to-image translation, we propose a discriminator
architecture which focuses on the statistical features instead of individual
patches. The network is stabilized by distribution matching of key statistical
features at multiple scales. Unlike the existing methods which impose more and
more constraints on the generator, our method facilitates the shape deformation
and enhances the fine details with a greatly simplified framework. We show that
the proposed method outperforms the existing state-of-the-art models in various
challenging applications including selfie-to-anime, male-to-female and glasses
removal. The code will be made publicly available.
- Abstract(参考訳): 教師なし画像画像変換では,個々のパッチではなく,統計的特徴に着目した識別器アーキテクチャを提案する。
ネットワークは、複数のスケールで重要な統計特徴の分布マッチングによって安定化される。
ジェネレータにより多くの制約を課す既存の方法とは異なり、本手法は形状変形を容易にし、非常に単純化されたフレームワークで細部を強化する。
提案手法は, 自撮りアニメ, 男性向け, メガネ除去など, 既存の最先端モデルよりも優れていることを示す。
コードは公開される予定だ。
関連論文リスト
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
多様な条件生成タスクを処理するための、シンプルで統一されたフレームワークを導入します。
提案手法は,異なる推論時間サンプリング方式による多目的化を実現する。
我々のモデルは、非親密なアライメントや粗い条件付けのような追加機能をサポートしています。
論文 参考訳(メタデータ) (2024-10-15T09:41:43Z) - MMAR: Towards Lossless Multi-Modal Auto-Regressive Probabilistic Modeling [64.09238330331195]
本稿では,MMAR(Multi-Modal Auto-Regressive)確率モデルフレームワークを提案する。
離散化の手法とは異なり、MMARは情報損失を避けるために連続的に評価された画像トークンを取り入れる。
MMARは他のジョイントマルチモーダルモデルよりもはるかに優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T17:57:18Z) - CLIP Adaptation by Intra-modal Overlap Reduction [1.2277343096128712]
画像空間におけるモーダル内重なりを埋め込み表現の観点から解析する。
Google Open Imagesデータセットからサンプルのジェネリックセットに軽量アダプタをトレーニングします。
論文 参考訳(メタデータ) (2024-09-17T16:40:58Z) - Unsupervised Representation Learning by Balanced Self Attention Matching [2.3020018305241337]
本稿では,BAMと呼ばれる画像特徴を埋め込む自己教師型手法を提案する。
我々は,これらの分布とグローバルな均衡とエントロピー正規化バージョンに一致する損失を最小化することにより,豊かな表現と特徴の崩壊を回避する。
半教師付きベンチマークと移動学習ベンチマークの両方において,先行手法と競合する性能を示す。
論文 参考訳(メタデータ) (2024-08-04T12:52:44Z) - Self-similarity Driven Scale-invariant Learning for Weakly Supervised
Person Search [66.95134080902717]
自己相似性駆動型スケール不変学習(SSL)という新しいワンステップフレームワークを提案する。
本稿では,ネットワークを前景と学習スケール不変の機能に集中させるための,マルチスケール・エクステンプラー・ブランチを提案する。
PRWおよびCUHK-SYSUデータベースの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-02-25T04:48:11Z) - Understanding Gender and Racial Disparities in Image Recognition Models [0.0]
クロスエントロピーを用いたマルチラベルソフトマックスの損失を,多ラベル分類問題における二進的クロスエントロピーの代わりに損失関数として検討する。
MR2データセットを用いて、モデル結果の公平性を評価し、モデルのアクティベーションを見て誤りを解釈し、可能な修正を提案する。
論文 参考訳(メタデータ) (2021-07-20T01:05:31Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
我々は、画像画素ではなく特徴統計を直接摂動することで、頑健なモデルを生成することで、敵の訓練に適応する。
提案手法であるAdvBN(Adversarial Batch Normalization)は,トレーニング中に最悪の機能摂動を発生させる単一ネットワーク層である。
論文 参考訳(メタデータ) (2020-09-18T17:52:34Z) - TSIT: A Simple and Versatile Framework for Image-to-Image Translation [103.92203013154403]
画像間翻訳のためのシンプルで多用途なフレームワークを提案する。
新たに提案した特徴変換を用いた2ストリーム生成モデルを提案する。
これにより、マルチスケールのセマンティック構造情報とスタイル表現を効果的に捕捉し、ネットワークに融合させることができる。
体系的な研究は、提案手法をいくつかの最先端タスク固有のベースラインと比較し、知覚的品質と定量的評価の両面での有効性を検証する。
論文 参考訳(メタデータ) (2020-07-23T15:34:06Z) - Transformation Consistency Regularization- A Semi-Supervised Paradigm
for Image-to-Image Translation [18.870983535180457]
本稿では,画像から画像への変換において,より困難な状況に陥るトランスフォーメーション一貫性の規則化を提案する。
我々は,画像の着色,分解,超解像の3つの異なる応用に対して,アルゴリズムの有効性を評価する。
提案手法はデータ効率が著しく向上し,画像再構成を行うにはラベル付きサンプルの約10~20%しか必要としない。
論文 参考訳(メタデータ) (2020-07-15T17:41:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。