論文の概要: A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection
- arxiv url: http://arxiv.org/abs/2104.14535v1
- Date: Thu, 29 Apr 2021 17:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-30 13:08:58.116999
- Title: A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection
- Title(参考訳): 半ショット異常検出のための階層変換識別生成モデル
- Authors: Shelly Sheynin, Sagie Benaim and Lior Wolf
- Abstract要約: 各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
- 参考スコア(独自算出の注目度): 93.38607559281601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection, the task of identifying unusual samples in data, often
relies on a large set of training samples. In this work, we consider the
setting of few-shot anomaly detection in images, where only a few images are
given at training. We devise a hierarchical generative model that captures the
multi-scale patch distribution of each training image. We further enhance the
representation of our model by using image transformations and optimize
scale-specific patch-discriminators to distinguish between real and fake
patches of the image, as well as between different transformations applied to
those patches. The anomaly score is obtained by aggregating the patch-based
votes of the correct transformation across scales and image regions. We
demonstrate the superiority of our method on both the one-shot and few-shot
settings, on the datasets of Paris, CIFAR10, MNIST and FashionMNIST as well as
in the setting of defect detection on MVTec. In all cases, our method
outperforms the recent baseline methods.
- Abstract(参考訳): データ中の異常なサンプルを識別するタスクである異常検出は、しばしば大量のトレーニングサンプルに依存する。
本研究では,訓練中に数枚の画像しか与えられていない画像における,数発の異常検出の設定について検討する。
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
画像変換を用いて,画像の実際のパッチと偽のパッチを区別するために,スケール固有のパッチ判別器を最適化することで,モデル表現をさらに強化する。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
本研究では,パリ,CIFAR10,MNIST,FashionMNISTのデータセットとMVTecの欠陥検出の設定において,ワンショットと少数ショットの両方で手法が優れていることを示す。
いずれの場合も,本手法は最近のベースライン法よりも優れている。
関連論文リスト
- Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - Masked Transformer for image Anomaly Localization [14.455765147827345]
パッチマスキングを用いたビジョントランスフォーマーアーキテクチャに基づく画像異常検出のための新しいモデルを提案する。
マルチレゾリューションパッチとその集合埋め込みは,モデルの性能を大幅に向上させることを示す。
提案モデルはMVTecや頭部CTなどの一般的な異常検出データセットでテストされている。
論文 参考訳(メタデータ) (2022-10-27T15:30:48Z) - FewGAN: Generating from the Joint Distribution of a Few Images [95.6635227371479]
本稿では,新しい,高品質で多様な画像を生成するための生成モデルFewGANを紹介する。
FewGANは、第1の粗いスケールで量子化を適用した階層的なパッチGANであり、その後、より微細なスケールで残った完全畳み込みGANのピラミッドが続く。
大規模な実験では、FewGANは定量的にも定性的にも基線より優れていることが示されている。
論文 参考訳(メタデータ) (2022-07-18T07:11:28Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
本稿では,グラフニューラルネットワークを用いた教師なし領域適応手法を提案する。
分布シフトを伴う2つの挑戦的医用画像データセットの分類法について検討した。
実験により,本手法は他の領域適応法と比較して最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2022-06-27T09:02:16Z) - Deep Learning-Based Defect Classification and Detection in SEM Images [1.9206693386750882]
特に、異なるResNet、VGGNetアーキテクチャをバックボーンとして使用するRetinaNetモデルをトレーニングする。
そこで本研究では,異なるモデルからの出力予測を組み合わせることで,欠陥の分類と検出に優れた性能を実現するための選好に基づくアンサンブル戦略を提案する。
論文 参考訳(メタデータ) (2022-06-20T16:34:11Z) - PatchNR: Learning from Small Data by Patch Normalizing Flow
Regularization [57.37911115888587]
正規化フローに基づく画像の逆問題に対する変分モデリングのための正規化器を提案する。
patchNRと呼ばれる我々の正規化器は、ごく少数の画像のパッチで学習したフローを正規化します。
論文 参考訳(メタデータ) (2022-05-24T12:14:26Z) - Inpainting Transformer for Anomaly Detection [0.0]
Inpainting Transformer(InTra)は、多数のイメージパッチにカバーパッチを塗布するように訓練されている。
InTraは、検出とローカライゼーションのためのMVTec ADデータセットの最先端結果よりも優れている。
論文 参考訳(メタデータ) (2021-04-28T17:27:44Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z) - Transformation Consistency Regularization- A Semi-Supervised Paradigm
for Image-to-Image Translation [18.870983535180457]
本稿では,画像から画像への変換において,より困難な状況に陥るトランスフォーメーション一貫性の規則化を提案する。
我々は,画像の着色,分解,超解像の3つの異なる応用に対して,アルゴリズムの有効性を評価する。
提案手法はデータ効率が著しく向上し,画像再構成を行うにはラベル付きサンプルの約10~20%しか必要としない。
論文 参考訳(メタデータ) (2020-07-15T17:41:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。