論文の概要: Systematic Mapping Protocol: Reasoning Algorithms on Feature Model
- arxiv url: http://arxiv.org/abs/2103.16325v1
- Date: Fri, 26 Mar 2021 23:34:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-31 14:46:54.008029
- Title: Systematic Mapping Protocol: Reasoning Algorithms on Feature Model
- Title(参考訳): システムマッピングプロトコル:特徴モデルに基づく推論アルゴリズム
- Authors: Samuel Sep\'ulveda, Marcelo Esperguel
- Abstract要約: 本研究は,機能モデリングのための推論アルゴリズムの証拠をまとめ,合成することを目的とする。
最初の発見は、機能モデリングのための異なる推論アルゴリズムのより詳細なレビューが必要であることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Context: The importance of the feature modeling for the software product
lines considering the modeling and management of the variability. Objective:
Define a protocol to conduct a systematic mapping study to summarize and
synthesize the evidence on reasoning algorithms for feature modeling. Method:
Application the protocol to conduct a systematic mapping study according the
guidelines of K. Petersen. Results: A validated protocol to conduct a
systematic mapping study. Conclusions: Initial findings show that a more
detailed review for the different reasoning algorithms for feature modeling is
needed.
- Abstract(参考訳): コンテキスト:可変性のモデリングと管理を考慮したソフトウェア製品ラインの機能モデリングの重要性。
目的: 体系的マッピング研究を行うためのプロトコルを定義し、特徴モデリングのための推論アルゴリズムのエビデンスを要約し、合成する。
方法:K. Petersenのガイドラインに従って系統地図研究を行うためのプロトコルの適用。
結果: 体系的マッピング研究を行うための検証済みプロトコル。
結論:最初の発見は、機能モデリングのための異なる推論アルゴリズムのより詳細なレビューが必要であることを示している。
関連論文リスト
- Selecting Interpretability Techniques for Healthcare Machine Learning models [69.65384453064829]
医療では、いくつかの意思決定シナリオにおいて、医療専門家を支援するために解釈可能なアルゴリズムを採用することが追求されている。
本稿では, ポストホックとモデルベースという8つのアルゴリズムを概説する。
論文 参考訳(メタデータ) (2024-06-14T17:49:04Z) - Action Model Learning with Guarantees [5.524804393257921]
本研究では,学習例と整合した仮説の探索としてタスクを解釈するバージョン空間に基づく行動モデル学習の理論を開発する。
我々の理論的発見は、問題のすべての解のコンパクトな表現を維持するオンラインアルゴリズムでインスタンス化される。
論文 参考訳(メタデータ) (2024-04-15T10:01:43Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
モデルベースとモデルフリー強化学習を統合した汎用フレームワークを提案する。
最適化に基づく探索のための分解可能な構造特性を持つ新しい推定関数を提案する。
本フレームワークでは,OPERA (Optimization-based Exploration with Approximation) という新しいサンプル効率アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:59:16Z) - Investigation of Machine Learning-based Coarse-Grained Mapping Schemes
for Organic Molecules [0.0]
粗粒化(CG)により、異なるシステム解像度間のリンクを確立することができる。
本稿では,変分オートエンコーダに基づく機械学習戦略を適用し,適切なマッピング手法の開発について検討する。
論文 参考訳(メタデータ) (2022-09-26T18:30:51Z) - RandomSCM: interpretable ensembles of sparse classifiers tailored for
omics data [59.4141628321618]
決定規則の結合や解離に基づくアンサンブル学習アルゴリズムを提案する。
モデルの解釈可能性により、高次元データのバイオマーカー発見やパターン発見に有用である。
論文 参考訳(メタデータ) (2022-08-11T13:55:04Z) - Active Learning of Markov Decision Processes using Baum-Welch algorithm
(Extended) [0.0]
本稿では,マルコフ決定過程とマルコフ連鎖を学習するためのBaum-Welchアルゴリズムを再検討し,適応する。
本研究では,本手法を最先端のツールと実証的に比較し,提案手法が正確なモデルを得るために必要な観測回数を大幅に削減できることを実証する。
論文 参考訳(メタデータ) (2021-10-06T18:54:19Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
本稿では,POMCPポリシーをトレースを検査して分析する手法を提案する。
提案手法は, 政策行動の局所的特性を探索し, 予期せぬ決定を識別する。
我々は,POMDPの標準ベンチマークであるTigerに対するアプローチと,移動ロボットナビゲーションに関する現実の問題を評価した。
論文 参考訳(メタデータ) (2020-12-23T15:09:28Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
本稿では,モデル解釈のためのモデル非依存能率直接(MEED)FSフレームワークを提案する。
我々のフレームワークは、正当性、ショートカット、モデルの識別可能性、情報伝達に関する懸念を緩和する。
我々のAILメカニズムは、選択した特徴と目標の間の条件分布を学習するのに役立ちます。
論文 参考訳(メタデータ) (2020-06-09T16:27:17Z) - On Training and Evaluation of Neural Network Approaches for Model
Predictive Control [9.8918553325509]
本稿では,制約ニューラルネットワークを用いて実装されたモデル予測制御(MPC)のトレーニングと評価を行うフレームワークである。
モチベーションは、安全クリティカルフィードバック制御システムのリアルタイム最適化を、ニューラルネットワークと最適化層という形で学習されたマッピングに置き換えることである。
論文 参考訳(メタデータ) (2020-05-08T15:37:55Z) - CONSAC: Robust Multi-Model Fitting by Conditional Sample Consensus [62.86856923633923]
我々は,同じ形状の複数のパラメトリックモデルを雑音測定に適合させる頑健な推定器を提案する。
複数のモデル検出のための手作り検索戦略を利用する従来の研究とは対照的に,データから検索戦略を学習する。
探索の自己教師付き学習において,提案したアルゴリズムをマルチホログラフィー推定で評価し,最先端手法よりも優れた精度を示す。
論文 参考訳(メタデータ) (2020-01-08T17:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。