論文の概要: Adversarial Infidelity Learning for Model Interpretation
- arxiv url: http://arxiv.org/abs/2006.05379v3
- Date: Mon, 3 Aug 2020 02:41:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 14:00:11.192097
- Title: Adversarial Infidelity Learning for Model Interpretation
- Title(参考訳): モデル解釈のための逆不整合学習
- Authors: Jian Liang, Bing Bai, Yuren Cao, Kun Bai, Fei Wang
- Abstract要約: 本稿では,モデル解釈のためのモデル非依存能率直接(MEED)FSフレームワークを提案する。
我々のフレームワークは、正当性、ショートカット、モデルの識別可能性、情報伝達に関する懸念を緩和する。
我々のAILメカニズムは、選択した特徴と目標の間の条件分布を学習するのに役立ちます。
- 参考スコア(独自算出の注目度): 43.37354056251584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model interpretation is essential in data mining and knowledge discovery. It
can help understand the intrinsic model working mechanism and check if the
model has undesired characteristics. A popular way of performing model
interpretation is Instance-wise Feature Selection (IFS), which provides an
importance score of each feature representing the data samples to explain how
the model generates the specific output. In this paper, we propose a
Model-agnostic Effective Efficient Direct (MEED) IFS framework for model
interpretation, mitigating concerns about sanity, combinatorial shortcuts,
model identifiability, and information transmission. Also, we focus on the
following setting: using selected features to directly predict the output of
the given model, which serves as a primary evaluation metric for
model-interpretation methods. Apart from the features, we involve the output of
the given model as an additional input to learn an explainer based on more
accurate information. To learn the explainer, besides fidelity, we propose an
Adversarial Infidelity Learning (AIL) mechanism to boost the explanation
learning by screening relatively unimportant features. Through theoretical and
experimental analysis, we show that our AIL mechanism can help learn the
desired conditional distribution between selected features and targets.
Moreover, we extend our framework by integrating efficient interpretation
methods as proper priors to provide a warm start. Comprehensive empirical
evaluation results are provided by quantitative metrics and human evaluation to
demonstrate the effectiveness and superiority of our proposed method. Our code
is publicly available online at https://github.com/langlrsw/MEED.
- Abstract(参考訳): モデル解釈はデータマイニングと知識発見に不可欠である。
これは本質的なモデルの動作メカニズムを理解し、モデルに望ましくない特性があるかどうかを確認するのに役立つ。
モデル解釈を実行する一般的な方法は、インスタンスワイドな特徴選択(IFS)であり、モデルが特定の出力を生成する方法を説明するために、データサンプルを表す各機能の重要性スコアを提供する。
本稿では,モデルの解釈,正当性,組合せ的ショートカット,モデル識別可能性,情報伝達に関する懸念を緩和するモデル非依存の有効効率直接(MEED)FSフレームワークを提案する。
また、選択した特徴を用いて与えられたモデルの出力を直接予測し、モデル解釈手法の一次評価指標として機能する。
特徴とは別に、より正確な情報に基づいて説明者を学ぶための追加入力として、与えられたモデルの出力を含む。
説明者を学習するために, 忠実性に加えて, 比較的重要でない特徴をスクリーニングすることにより, 説明学習を促進するための逆不忠実性学習(ail)機構を提案する。
理論的および実験的解析により、AIL機構は、選択した特徴と対象間の条件分布を学習するのに役立つことを示す。
さらに,本フレームワークは,効率的な解釈手法を適切な事前として統合することにより,温かいスタートを提供する。
提案手法の有効性と優位性を示すため, 定量的評価と人的評価により, 総合的な実証評価結果が得られた。
私たちのコードはhttps://github.com/langlrsw/meed.comで公開されている。
関連論文リスト
- Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
大規模言語モデル(LLM)は、インコンテキスト学習(ICL)を用いて広範囲のタスクを実行するという印象的な能力を示している。
本研究ではまず,データとモデルの両方の側面から,この分散に寄与する要因を再検討し,実演の選択がデータとモデルに依存していることを確かめる。
本研究では,データとモデルに依存した実演選択手法である textbfTopK + ConE を提案する。
論文 参考訳(メタデータ) (2024-01-22T16:25:27Z) - On the Foundations of Shortcut Learning [20.53986437152018]
予測と可用性が形状モデルの特徴的利用とどのように相互作用するかを考察する。
線形モデルは比較的偏りがないが、ReLUやTanhの単位を持つ単一の隠蔽層を導入するとバイアスが生じる。
論文 参考訳(メタデータ) (2023-10-24T22:54:05Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Distilling Interpretable Models into Human-Readable Code [71.11328360614479]
人間可読性は機械学習モデル解釈可能性にとって重要で望ましい標準である。
従来の方法を用いて解釈可能なモデルを訓練し,それを簡潔で可読なコードに抽出する。
本稿では,幅広いユースケースで効率的に,確実に高品質な結果を生成する分別線形曲線フィッティングアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-01-21T01:46:36Z) - A Framework to Learn with Interpretation [2.3741312212138896]
本稿では,予測モデルとその関連解釈モデルを共同で学習する新しい枠組みを提案する。
我々は,選択した隠れ層の出力を入力として取り込む,高レベル属性関数の小型辞書を求める。
学習した機能を視覚化する詳細なパイプラインも開発されている。
論文 参考訳(メタデータ) (2020-10-19T09:26:28Z) - Better Model Selection with a new Definition of Feature Importance [8.914907178577476]
特徴の重要性は、各入力特徴がモデル予測にとってどれほど重要かを測定することを目的としている。
本稿では,モデル選択のための新しいツリーモデル説明手法を提案する。
論文 参考訳(メタデータ) (2020-09-16T14:32:22Z) - ALEX: Active Learning based Enhancement of a Model's Explainability [34.26945469627691]
アクティブラーニング(AL)アルゴリズムは、最小限のラベル付き例をブートストラップ方式で効率的な分類器を構築しようとする。
データ駆動学習の時代において、これは追求すべき重要な研究方向である。
本稿では,モデルの有効性に加えて,ブートストラップ段階におけるモデルの解釈可能性の向上も目指すAL選択関数の開発に向けた取り組みについて述べる。
論文 参考訳(メタデータ) (2020-09-02T07:15:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。