Rapid quantum approaches for combinatorial optimisation inspired by
optimal state-transfer
- URL: http://arxiv.org/abs/2301.06846v2
- Date: Wed, 7 Feb 2024 17:30:12 GMT
- Title: Rapid quantum approaches for combinatorial optimisation inspired by
optimal state-transfer
- Authors: Robert J. Banks, Dan E. Browne and P.A. Warburton
- Abstract summary: We propose a new design to tackle optimisation problems, inspired by Hamiltonians for optimal state-transfer.
We provide numerical evidence of the success of this new design.
- Score: 3.591122855617648
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new design heuristic to tackle combinatorial optimisation
problems, inspired by Hamiltonians for optimal state-transfer. The result is a
rapid approximate optimisation algorithm. We provide numerical evidence of the
success of this new design heuristic. We find this approach results in a better
approximation ratio than the Quantum Approximate Optimisation Algorithm at
lowest depth for the majority of problem instances considered, while utilising
comparable resources. This opens the door to investigating new approaches for
tackling combinatorial optimisation problems, distinct from
adiabatic-influenced approaches.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models.
New algorithms retain the ease of implementation of the classical GP-UCB, but an additional exploration step facilitates their convergence.
arXiv Detail & Related papers (2024-01-30T14:16:06Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm.
They achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables.
arXiv Detail & Related papers (2022-08-08T11:29:55Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - A Gauss-Newton based Quantum Algorithm for Combinatorial Optimization [0.0]
We present a Gauss-Newton based quantum algorithm (GNQA) for optimization problems that, under optimal conditions, rapidly converge towards one of the optimal solutions without being trapped in local minima or plateaus.
Our approach mitigates those by employing a tensor product state that accurately represents the optimal solution, and an appropriate function for the Hamiltonian, containing all the combinations of binary variables.
Numerical experiments presented here demonstrate the effectiveness of our approach, and they show that GNQA outperforms other optimization methods in both convergence properties and accuracy for all problems considered here.
arXiv Detail & Related papers (2022-03-25T23:49:31Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Improving the Quantum Approximate Optimization Algorithm with
postselection [0.0]
Combinatorial optimization is among the main applications envisioned for near-term and fault-tolerant quantum computers.
We consider a well-studied quantum algorithm for optimization: the Quantum Approximate Optimization Algorithm (QAOA) applied to the MaxCut problem on 3-regular graphs.
We derive theoretical upper and lower bounds showing that a constant (though small) increase of the fraction of satisfied edges is indeed achievable.
arXiv Detail & Related papers (2020-11-10T22:17:50Z) - Optimistic variants of single-objective bilevel optimization for
evolutionary algorithms [6.788217433800101]
A partial partial evolutionary approach has been proposed to solve the benchmark problems and have outstanding results.
A new variant has also been proposed to the commonly used convergence approaches, i.e. optimistic and pessimistic.
The experimental results demonstrate the algorithm converges differently to optimum solutions with the optimistic variants.
arXiv Detail & Related papers (2020-08-22T23:12:07Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.