Causal Hidden Markov Model for Time Series Disease Forecasting
- URL: http://arxiv.org/abs/2103.16391v1
- Date: Tue, 30 Mar 2021 14:34:15 GMT
- Title: Causal Hidden Markov Model for Time Series Disease Forecasting
- Authors: Jing Li, Botong Wu, Xinwei Sun, Yizhou Wang
- Abstract summary: We propose a causal hidden Markov model to achieve robust prediction of irreversible disease at an early stage.
We apply our model to the early prediction of peripapillary atrophy and achieve promising results on out-of-distribution test data.
- Score: 21.10268531186633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a causal hidden Markov model to achieve robust prediction of
irreversible disease at an early stage, which is safety-critical and vital for
medical treatment in early stages. Specifically, we introduce the hidden
variables which propagate to generate medical data at each time step. To avoid
learning spurious correlation (e.g., confounding bias), we explicitly separate
these hidden variables into three parts: a) the disease (clinical)-related
part; b) the disease (non-clinical)-related part; c) others, with only a),b)
causally related to the disease however c) may contain spurious correlations
(with the disease) inherited from the data provided. With personal attributes
and the disease label respectively provided as side information and
supervision, we prove that these disease-related hidden variables can be
disentangled from others, implying the avoidance of spurious correlation for
generalization to medical data from other (out-of-) distributions. Guaranteed
by this result, we propose a sequential variational auto-encoder with a
reformulated objective function. We apply our model to the early prediction of
peripapillary atrophy and achieve promising results on out-of-distribution test
data. Further, the ablation study empirically shows the effectiveness of each
component in our method. And the visualization shows the accurate
identification of lesion regions from others.
Related papers
- Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Conditional Score-Based Diffusion Model for Cortical Thickness
Trajectory Prediction [29.415616701032604]
Alzheimer's Disease (AD) is a neurodegenerative condition characterized by diverse progression rates among individuals.
We propose a conditional score-based diffusion model to generate CTh trajectories with the given baseline information.
Our model has a near-zero bias with narrow confidential 95% interval compared to the ground-truth CTh in 6-36 months.
arXiv Detail & Related papers (2024-03-11T17:26:18Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Domain Invariant Model with Graph Convolutional Network for Mammogram
Classification [49.691629817104925]
We propose a novel framework, namely Domain Invariant Model with Graph Convolutional Network (DIM-GCN)
We first propose a Bayesian network, which explicitly decomposes the latent variables into disease-related and other disease-irrelevant parts that are provable to be disentangled from each other.
To better capture the macroscopic features, we leverage the observed clinical attributes as a goal for reconstruction, via Graph Convolutional Network (GCN)
arXiv Detail & Related papers (2022-04-21T08:23:44Z) - Correlation-based Discovery of Disease Patterns for Syndromic
Surveillance [0.0]
syndromic surveillance aims at the detection of cases with early symptoms.
Early symptoms are usually shared among many diseases and a particular disease can have several clinical pictures in the early phase of an infection.
We present a novel, data-driven approach to discover such patterns in historic data.
arXiv Detail & Related papers (2021-10-18T11:50:26Z) - Clustering Left-Censored Multivariate Time-Series [2.4493299476776778]
We focus on mitigating the interference of left-censorship in the task of clustering.
We develop a deep generative, continuous-time model of time-series data that clusters while correcting for censorship time.
We demonstrate accurate, stable, and interpretable results on synthetic data.
arXiv Detail & Related papers (2021-02-13T21:22:40Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
Disease diagnosis on chest X-ray images is a challenging multi-label classification task.
We propose a Disease Diagnosis Graph Convolutional Network (DD-GCN) that presents a novel view of investigating the inter-dependency among different diseases.
Our method is the first to build a graph over the feature maps with a dynamic adjacency matrix for correlation learning.
arXiv Detail & Related papers (2020-02-26T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.