論文の概要: Robustifying Conditional Portfolio Decisions via Optimal Transport
- arxiv url: http://arxiv.org/abs/2103.16451v3
- Date: Tue, 9 Apr 2024 13:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-10 21:05:06.840592
- Title: Robustifying Conditional Portfolio Decisions via Optimal Transport
- Title(参考訳): 最適輸送によるロバスト化条件ポートフォリオ決定
- Authors: Viet Anh Nguyen, Fan Zhang, Shanshan Wang, Jose Blanchet, Erick Delage, Yinyu Ye,
- Abstract要約: 副次情報,条件推定,ロバスト性を統合したデータ駆動型ポートフォリオ選択モデルを提案する。
側情報問題による分散ロバストなポートフォリオ割り当ては,有限次元最適化問題として再構成可能であることを示す。
- 参考スコア(独自算出の注目度): 19.30689697702845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a data-driven portfolio selection model that integrates side information, conditional estimation and robustness using the framework of distributionally robust optimization. Conditioning on the observed side information, the portfolio manager solves an allocation problem that minimizes the worst-case conditional risk-return trade-off, subject to all possible perturbations of the covariate-return probability distribution in an optimal transport ambiguity set. Despite the non-linearity of the objective function in the probability measure, we show that the distributionally robust portfolio allocation with side information problem can be reformulated as a finite-dimensional optimization problem. If portfolio decisions are made based on either the mean-variance or the mean-Conditional Value-at-Risk criterion, the resulting reformulation can be further simplified to second-order or semi-definite cone programs. Empirical studies in the US equity market demonstrate the advantage of our integrative framework against other benchmarks.
- Abstract(参考訳): 本稿では,分散的ロバスト最適化の枠組みを用いて,側面情報,条件推定,ロバスト性を統合するデータ駆動ポートフォリオ選択モデルを提案する。
ポートフォリオマネージャは、観測側情報を条件として、最適輸送あいまい度セットにおける共変量-回帰確率分布の全ての摂動を条件として、最悪の条件付きリスク-リターントレードオフを最小限にする割当問題を解く。
確率測度における目的関数の非線形性にもかかわらず、サイド情報問題による分散ロバストなポートフォリオ割り当ては、有限次元最適化問題として再構成可能であることを示す。
もしポートフォリオの決定が平均分散または平均連続値-アット・リスク基準のいずれかに基づいてなされた場合、その結果の改革は2階または半確定円錐プログラムにさらに単純化される。
米国株式市場における実証研究は、他のベンチマークに対する我々の統合的フレームワークの利点を実証している。
関連論文リスト
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Robust Data-driven Prescriptiveness Optimization [4.792851066169871]
本稿では、古典的経験的リスク目標最小化に代えて、規範性の係数が代わる分布的ロバストな文脈最適化モデルを提案する。
サンプル外データセットが様々な分散シフトを受ける場合の代替手法に対する結果のロバスト性を評価する。
論文 参考訳(メタデータ) (2023-06-09T14:56:06Z) - New Perspectives on Regularization and Computation in Optimal
Transport-Based Distributionally Robust Optimization [8.564319625930892]
本研究では, 有限の輸送コストで所定の基準分布による不確実な問題パラメータの分布を選択することができるような, 最適輸送に基づく分布安定度最適化問題について検討する。
論文 参考訳(メタデータ) (2023-03-07T13:52:32Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Markov Decision Processes under Model Uncertainty [0.0]
モデル不確実性の下でマルコフ決定問題に対する一般的な枠組みを導入する。
このフレームワークをS&P 500のデータを含むポートフォリオ最適化に適用する。
論文 参考訳(メタデータ) (2022-06-13T12:51:31Z) - Distributionally Robust End-to-End Portfolio Construction [0.0]
データから直接、リスク耐性パラメータとロバストネスの程度を学習する方法を示す。
本稿では,ポートフォリオ構築のためのエンドツーエンドの分散ロバストシステムを提案する。
論文 参考訳(メタデータ) (2022-06-10T14:16:22Z) - Integrated Conditional Estimation-Optimization [6.037383467521294]
確率のある不確実なパラメータを文脈的特徴情報を用いて推定できる実世界の多くの最適化問題である。
不確実なパラメータの分布を推定する標準的な手法とは対照的に,統合された条件推定手法を提案する。
当社のI CEOアプローチは、穏健な条件下で理論的に一貫性があることを示します。
論文 参考訳(メタデータ) (2021-10-24T04:49:35Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
重要なアプリケーションでは,効果的な推定が依然として可能であることを示す。
我々のアプローチは、定常分布と経験分布の差を補正する比率を推定することに基づいている。
結果として得られるアルゴリズム、GenDICEは単純で効果的である。
論文 参考訳(メタデータ) (2020-02-21T00:27:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。