Quantum liquids and droplets with low-energy interactions in one
dimension
- URL: http://arxiv.org/abs/2103.16499v1
- Date: Tue, 30 Mar 2021 16:56:01 GMT
- Title: Quantum liquids and droplets with low-energy interactions in one
dimension
- Authors: Ivan Morera, Bruno Juli\'a-D\'iaz, and Manuel Valiente
- Abstract summary: We study the role of effective three-body repulsion, in systems with weak attractive pairwise interactions.
At zero temperature, the equations of state in both theories agree quantitatively at low densities for overall repulsion.
We develop analytical tools to investigate the properties of the theory, and obtain astounding agreement with exact numerical calculations.
- Score: 0.20646127669654826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider interacting one-dimensional bosons in the universal low-energy
regime. The interactions consist of a combination of attractive and repulsive
parts that can stabilize quantum gases, droplets and liquids. In particular, we
study the role of effective three-body repulsion, in systems with weak
attractive pairwise interactions. Its low-energy description is often argued to
be equivalent to a model including only two-body interactions with non-zero
range. Here, we show that, at zero temperature, the equations of state in both
theories agree quantitatively at low densities for overall repulsion, in the
gas phase, as can be inferred from the $S$-matrix formulation of statistical
mechanics. However, this agreement is absent in the attractive regime, where
universality only occurs in the long-distance properties of quantum droplets.
We develop analytical tools to investigate the properties of the theory, and
obtain astounding agreement with exact numerical calculations using the
density-matrix renormalization group.
Related papers
- Universal quasi-Fermi liquid physics of one-dimensional interacting fermions [1.024113475677323]
We present a class of one-dimensional generic spinless fermion lattice Hamiltonians that express quasi-Fermi liquid physics.
Key features include a finite discontinuity in the momentum distribution at the Fermi level, despite power-law singularities in the spectral function protected by particle-hole symmetry.
arXiv Detail & Related papers (2024-06-14T14:21:16Z) - Partial confinement in a quantum-link simulator [25.949731736282295]
We show that the spin-1 quantum link model provides an excellent platform for exploring partial confinement.
We conduct a comprehensive investigation of the physics emerging from partial confinement in both the context of equilibrium and non-equilibrium dynamics.
Our work offers a simple and feasible routine for the study of confinement-related physics in the state-of-the-art artificial quantum systems.
arXiv Detail & Related papers (2024-04-28T06:55:08Z) - Emergent Anomalous Hydrodynamics at Infinite Temperature in a Long-Range XXZ Model [14.297989605089663]
We find anomalous hydrodynamics in a spin-1/2 XXZ chain with power-law couplings.
We quantify the degree of quantum chaos using the Kullback-Leibler divergence.
This work offers another deep understanding of emergent anomalous transport phenomena in a wider range of non-integrable quantum many-body systems.
arXiv Detail & Related papers (2024-03-26T17:50:04Z) - Exact finite-time correlation functions for multi-terminal setups: Connecting theoretical frameworks for quantum transport and thermodynamics [11.061707876645764]
Transport in open quantum systems can be explored through various theoretical frameworks, including the quantum master equation, scattering matrix, and Heisenberg equation of motion.
Existing literature treats these approaches independently, lacking a unified perspective.
Our work addresses this gap by clarifying the role and status of these approaches using a minimal single-level quantum dot model in a two-terminal setup.
arXiv Detail & Related papers (2023-12-22T21:09:18Z) - Ground-state Properties and Bogoliubov Modes of a Harmonically Trapped
One-Dimensional Quantum Droplet [4.864202986612716]
We study the stationary and excitation properties of a one-dimensional quantum droplet in a Bose mixture trapped in a harmonic potential.
We explicitly show how the spectrum of the excitation is split into discrete modes, and finally taken over by the harmonic trap.
arXiv Detail & Related papers (2023-09-11T05:39:53Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Resonant enhancement of three-body loss between strongly interacting
photons [47.30557822621873]
Rydberg polaritons provide an example of a rare type of system where three-body interactions can be as strong or even stronger than two-body interactions.
We show how the shape and strength of dissipative three-body forces can be universally enhanced for Rydberg polaritons.
arXiv Detail & Related papers (2020-10-19T18:21:49Z) - Bose-Fermi dualities for arbitrary one-dimensional quantum systems in
the universal low energy regime [0.2741266294612775]
I consider general interacting systems of quantum particles in one spatial dimension.
These consist of bosons or fermions, which can have any number of components, arbitrary spin or a combination thereof.
The single-particle dispersion can be Galilean (non-relativistic), relativistic, or have any other form that may be relevant for the continuum limit of lattice theories.
arXiv Detail & Related papers (2020-09-01T18:00:04Z) - Universal dimerized quantum droplets in a one-dimensional lattice [0.0]
Ground-state properties of two-component bosonic mixtures in a one-dimensional optical lattice are studied.
We rely on a microscopic Hamiltonian with attractive inter-component and repulsive intra-component interactions to demonstrate the formation of a quantum liquid.
arXiv Detail & Related papers (2020-07-03T16:22:29Z) - Adiabatic quantum decoherence in many non-interacting subsystems induced
by the coupling with a common boson bath [0.0]
This work addresses quantum adiabatic decoherence of many-body spin systems coupled with a boson field in the framework of open quantum systems theory.
We generalize the traditional spin-boson model by considering a system-environment interaction Hamiltonian that represents a partition of non-interacting subsystems.
arXiv Detail & Related papers (2019-12-30T16:39:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.