論文の概要: Bidirectional information flow quantum state tomography
- arxiv url: http://arxiv.org/abs/2103.16781v1
- Date: Wed, 31 Mar 2021 02:57:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 01:25:30.390651
- Title: Bidirectional information flow quantum state tomography
- Title(参考訳): 双方向情報フロー量子状態トモグラフィ
- Authors: Huikang Huang, Haozhen Situ and Shenggen Zheng
- Abstract要約: 双方向Gated Recurrent Unit Neural Network (BiGRU) に基づく量子状態トモグラフィー法を提案する。
この方法では、これらの量子状態を再構成し、高い忠実度を得るために、より少ない測定サンプルを使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The exact reconstruction of many-body quantum systems is one of the major
challenges in modern physics, because it is impractical to overcome the
exponential complexity problem brought by high-dimensional quantum many-body
systems. Recently, machine learning techniques are well used to promote quantum
information research and quantum state tomography has been also developed by
neural network generative models. We propose a quantum state tomography method,
which is based on Bidirectional Gated Recurrent Unit neural network (BiGRU), to
learn and reconstruct both easy quantum states and hard quantum states in this
paper. We are able to use fewer measurement samples in our method to
reconstruct these quantum states and obtain high fidelity.
- Abstract(参考訳): 多体量子系の正確な再構成は、高次元の量子多体系によってもたらされる指数複雑性問題を克服するのは現実的ではないため、現代物理学における大きな課題の1つである。
近年、量子情報研究の推進に機械学習技術が活用され、ニューラルネットワーク生成モデルでも量子状態トモグラフィーが開発されている。
本稿では,双方向ゲート型リカレントユニットニューラルネットワーク(bigru)に基づいて,簡単な量子状態とハード量子状態の両方を学習・再構成する量子状態トモグラフィー手法を提案する。
我々は、これらの量子状態を再構成し、高い忠実度を得るために、より少ない測定サンプルを用いることができる。
関連論文リスト
- Universal Quantum Tomography With Deep Neural Networks [0.0]
純量子状態トモグラフィーと混合量子状態トモグラフィーの両方に対する2つのニューラルネットワークに基づくアプローチを提案する。
提案手法は,実験データから混合量子状態の再構成を行なえることを示す。
論文 参考訳(メタデータ) (2024-07-01T19:09:18Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Reconstructing complex states of a 20-qubit quantum simulator [0.6646556786265893]
本稿では, 量子状態の多角化を効果的に再現する手法を示す。
我々は,ニューラルネットワークの量子状態表現に基づく手法と比較して,状態再構成の品質と収束の高速化を観察する。
本研究は,多体量子系のクエンチダイナミクスによって生成される複素状態の効率的な実験的評価への道を開くものである。
論文 参考訳(メタデータ) (2022-08-09T15:52:20Z) - Reconstructing Quantum States Using Basis-Enhanced Born Machines [0.0]
ボルンマシンは2つのパウリ測度ベースのみからの射影測定を用いて純粋量子状態の再構成を行うことができることを示す。
我々は、基礎強化されたボルン機械を実装し、ライドバーグ原子の1次元鎖の位相図の上の基底状態を学ぶ。
このモデルは量子相関と異なる観測値を正確に予測し、システムサイズは37量子ビットとみなす。
論文 参考訳(メタデータ) (2022-06-02T19:52:38Z) - Variational quantum process tomography [12.843681115589122]
我々は、未知のユニタリ量子プロセスを比較的浅い深さパラメトリック量子回路に符号化する量子機械学習アルゴリズムを提唱した。
その結果、これらの量子プロセスは高い忠実度で再構成可能である一方で、必要な入力状態の数は、標準量子プロセストモグラフィーで要求されるよりも少なくとも2ドル以下であることがわかった。
論文 参考訳(メタデータ) (2021-08-05T03:36:26Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Reconstructing quantum states with quantum reservoir networks [4.724825031148412]
我々は貯水池計算の枠組みに基づく量子状態トモグラフィープラットフォームを導入する。
量子ニューラルネットワークを形成し、任意の量子状態を再構築するための包括的なデバイスとして機能する。
論文 参考訳(メタデータ) (2020-08-14T14:01:55Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。