High-quality Low-dose CT Reconstruction Using Convolutional Neural
Networks with Spatial and Channel Squeeze and Excitation
- URL: http://arxiv.org/abs/2104.00325v1
- Date: Thu, 1 Apr 2021 08:15:53 GMT
- Title: High-quality Low-dose CT Reconstruction Using Convolutional Neural
Networks with Spatial and Channel Squeeze and Excitation
- Authors: Jingfeng Lu, Shuo Wang, Ping Li, Dong Ye
- Abstract summary: We present a High-Quality Imaging network (HQINet) for the CT image reconstruction from Low-dose computed tomography (CT) acquisitions.
HQINet was a convolutional encoder-decoder architecture, where the encoder was used to extract spatial and temporal information from three contiguous slices.
- Score: 15.05273611411106
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Low-dose computed tomography (CT) allows the reduction of radiation risk in
clinical applications at the expense of image quality, which deteriorates the
diagnosis accuracy of radiologists. In this work, we present a High-Quality
Imaging network (HQINet) for the CT image reconstruction from Low-dose computed
tomography (CT) acquisitions. HQINet was a convolutional encoder-decoder
architecture, where the encoder was used to extract spatial and temporal
information from three contiguous slices while the decoder was used to recover
the spacial information of the middle slice. We provide experimental results on
the real projection data from low-dose CT Image and Projection Data
(LDCT-and-Projection-data), demonstrating that the proposed approach yielded a
notable improvement of the performance in terms of image quality, with a rise
of 5.5dB in terms of peak signal-to-noise ratio (PSNR) and 0.29 in terms of
mutual information (MI).
Related papers
- CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - Application of Gated Recurrent Units for CT Trajectory Optimization [3.4916237834391874]
This paper presents a novel approach using Gated Recurrent Units (GRUs) to optimize CT scan trajectories.
We focus on cone-beam CT and employ several projection-based metrics, including absorption, pixel intensities, contrast-to-noise ratio, and data completeness.
The results show that the GRU-optimized scan trajectories can outperform traditional circular CT trajectories in terms of image quality metrics.
arXiv Detail & Related papers (2024-05-15T13:33:23Z) - Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial [8.393536317952085]
We propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial.
We present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data.
arXiv Detail & Related papers (2024-03-19T00:07:48Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy.
Recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts.
We propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging.
arXiv Detail & Related papers (2023-11-01T10:09:01Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - On the Benefit of Dual-domain Denoising in a Self-supervised Low-dose CT
Setting [6.450514665591633]
Data-driven image denoising algorithms were proposed to restore image quality in low-dose acquisitions.
We present an end-to-end trainable CT reconstruction pipeline that contains denoising operators in both the projection and the image domain.
arXiv Detail & Related papers (2022-11-02T13:37:59Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
The aim of this study is to train a single neural network to reconstruct high-quality CT images from noisy or incomplete data.
The network includes a self-attention block to model long-range dependencies in the data.
Our approach is shown to have comparable overall performance to CIRCLE GAN, while outperforming the other two approaches.
arXiv Detail & Related papers (2021-12-23T19:20:38Z) - A Learning-based Method for Online Adjustment of C-arm Cone-Beam CT
Source Trajectories for Artifact Avoidance [47.345403652324514]
The reconstruction quality attainable with commercial CBCT devices is insufficient due to metal artifacts in the presence of pedicle screws.
We propose to adjust the C-arm CBCT source trajectory during the scan to optimize reconstruction quality with respect to a certain task.
We demonstrate that convolutional neural networks trained on realistically simulated data are capable of predicting quality metrics that enable scene-specific adjustments of the CBCT source trajectory.
arXiv Detail & Related papers (2020-08-14T09:23:50Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.