Learning Rates for Multi-task Regularization Networks
- URL: http://arxiv.org/abs/2104.00453v1
- Date: Thu, 1 Apr 2021 13:10:29 GMT
- Title: Learning Rates for Multi-task Regularization Networks
- Authors: Jie Gui and Haizhang Zhang
- Abstract summary: Multi-task learning is an important trend in machine learning in facing the era of artificial intelligence and big data.
We present mathematical analysis on the learning rate estimate of multi-task learning based on the theory of vector-valued reproducing kernel Hilbert spaces and matrix-valued reproducing kernels.
It reveals that the generalization ability of multi-task learning algorithms is indeed affected as the number of tasks increases.
- Score: 7.799917891986168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning is an important trend of machine learning in facing the
era of artificial intelligence and big data. Despite a large amount of
researches on learning rate estimates of various single-task machine learning
algorithms, there is little parallel work for multi-task learning. We present
mathematical analysis on the learning rate estimate of multi-task learning
based on the theory of vector-valued reproducing kernel Hilbert spaces and
matrix-valued reproducing kernels. For the typical multi-task regularization
networks, an explicit learning rate dependent both on the number of sample data
and the number of tasks is obtained. It reveals that the generalization ability
of multi-task learning algorithms is indeed affected as the number of tasks
increases.
Related papers
- Is Multi-Task Learning an Upper Bound for Continual Learning? [26.729088618251282]
This paper proposes a novel continual self-supervised learning setting, where each task corresponds to learning an invariant representation for a specific class of data augmentations.
We show that continual learning often beats multi-task learning on various benchmark datasets, including MNIST, CIFAR-10, and CIFAR-100.
arXiv Detail & Related papers (2022-10-26T15:45:11Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Active Multi-Task Representation Learning [50.13453053304159]
We give the first formal study on resource task sampling by leveraging the techniques from active learning.
We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance.
arXiv Detail & Related papers (2022-02-02T08:23:24Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
We present a theoretical analysis suggesting that many specialized multi-tasks can be interpreted as forms of regularization.
We show that, when coupled with standard regularization and stabilization techniques, unitary scalarization matches or improves upon the performance of complex multitasks.
arXiv Detail & Related papers (2022-01-11T18:44:17Z) - Multi-Task Neural Processes [105.22406384964144]
We develop multi-task neural processes, a new variant of neural processes for multi-task learning.
In particular, we propose to explore transferable knowledge from related tasks in the function space to provide inductive bias for improving each individual task.
Results demonstrate the effectiveness of multi-task neural processes in transferring useful knowledge among tasks for multi-task learning.
arXiv Detail & Related papers (2021-11-10T17:27:46Z) - On the relationship between disentanglement and multi-task learning [62.997667081978825]
We take a closer look at the relationship between disentanglement and multi-task learning based on hard parameter sharing.
We show that disentanglement appears naturally during the process of multi-task neural network training.
arXiv Detail & Related papers (2021-10-07T14:35:34Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Multitask learning over graphs: An Approach for Distributed, Streaming
Machine Learning [46.613346075513206]
Multitask learning is an approach to inductive transfer learning.
Recent years have witnessed an increasing ability to collect data in a distributed and streaming manner.
This requires the design of new strategies for learning jointly multiple tasks from streaming data over distributed (or networked) systems.
arXiv Detail & Related papers (2020-01-07T15:32:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.