論文の概要: Improved Image Generation via Sparse Modeling
- arxiv url: http://arxiv.org/abs/2104.00464v1
- Date: Thu, 1 Apr 2021 13:52:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-02 13:26:07.353993
- Title: Improved Image Generation via Sparse Modeling
- Title(参考訳): スパースモデリングによる画像生成の改善
- Authors: Roy Ganz and Michael Elad
- Abstract要約: 生成器は、Convolutional Sparse Coding (CSC) とそのMulti-Layeredバージョン (ML-CSC) 合成プロセスの発現として見ることができる。
この観測は、発電機内の適切な選択された活性化層にスパーシファイング正規化を明示的に強制することによって活用する。
- 参考スコア(独自算出の注目度): 27.66648389933265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interest of the deep learning community in image synthesis has grown
massively in recent years. Nowadays, deep generative methods, and especially
Generative Adversarial Networks (GANs), are leading to state-of-the-art
performance, capable of synthesizing images that appear realistic. While the
efforts for improving the quality of the generated images are extensive, most
attempts still consider the generator part as an uncorroborated "black-box". In
this paper, we aim to provide a better understanding and design of the image
generation process. We interpret existing generators as implicitly relying on
sparsity-inspired models. More specifically, we show that generators can be
viewed as manifestations of the Convolutional Sparse Coding (CSC) and its
Multi-Layered version (ML-CSC) synthesis processes. We leverage this
observation by explicitly enforcing a sparsifying regularization on
appropriately chosen activation layers in the generator, and demonstrate that
this leads to improved image synthesis. Furthermore, we show that the same
rationale and benefits apply to generators serving inverse problems,
demonstrated on the Deep Image Prior (DIP) method.
- Abstract(参考訳): 近年,画像合成における深層学習コミュニティの関心が高まっている。
今日では、深層生成法、特にGAN(Generative Adversarial Networks)は、現実的な画像の合成が可能な最先端のパフォーマンスを実現している。
生成した画像の品質を改善する努力は広いが、ほとんどの試みは生成部を非相関の「ブラックボックス」と見なしている。
本稿では,画像生成プロセスのより深い理解と設計を実現することを目的とする。
既存のジェネレータは、スパーシティに触発されたモデルに暗黙的に依存していると解釈する。
より具体的には、生成元を畳み込みスパース符号化(CSC)とその多層化(ML-CSC)合成プロセスのマニフェストとみなすことができる。
我々は、この観測を、生成器内で適切に選択されたアクティベーション層にスパース化正規化を明示的に実施することにより、画像合成の改善につながることを示す。
さらに,Deep Image Prior (DIP) 法では,逆問題に対処するジェネレータにも同様の論理と利点が適用されることを示した。
関連論文リスト
- Active Generation for Image Classification [45.93535669217115]
本稿では,モデルのニーズと特徴に着目し,画像生成の効率性に対処することを提案する。
能動学習の中心的傾向として,ActGenという手法が,画像生成のトレーニング・アウェア・アプローチを取り入れている。
論文 参考訳(メタデータ) (2024-03-11T08:45:31Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - RenAIssance: A Survey into AI Text-to-Image Generation in the Era of
Large Model [93.8067369210696]
テキスト・ツー・イメージ生成(テキスト・トゥ・イメージ・ジェネレーション、英: Text-to-image Generation、TTI)とは、テキスト入力を処理し、テキスト記述に基づいて高忠実度画像を生成するモデルである。
拡散モデル (diffusion model) は、繰り返しステップによるノイズの体系的導入を通じて画像の生成に使用される顕著な生成モデルである。
大規模モデルの時代、モデルサイズを拡大し、大規模言語モデルとの統合により、TTIモデルの性能がさらに向上した。
論文 参考訳(メタデータ) (2023-09-02T03:27:20Z) - GH-Feat: Learning Versatile Generative Hierarchical Features from GANs [61.208757845344074]
画像合成から学習した生成機能は、幅広いコンピュータビジョンタスクを解く上で大きな可能性を秘めていることを示す。
まず,事前学習したStyleGANジェネレータを学習損失関数として考慮し,エンコーダを訓練する。
GH-Feat(Generative Hierarchical Features)と呼ばれるエンコーダが生成する視覚的特徴は、階層的なGAN表現と高度に一致している。
論文 参考訳(メタデータ) (2023-01-12T21:59:46Z) - Hierarchical Semantic Regularization of Latent Spaces in StyleGANs [53.98170188547775]
本稿では,階層型意味正規化器(HSR)を提案する。これは,生成元が学習した階層的表現と,事前学習したネットワークが大量のデータに基づいて学習する強力な特徴とを一致させる。
HSRは、ジェネレータ表現の改善だけでなく、潜在スタイル空間の線形性と滑らかさも示しており、より自然なスタイル編集画像の生成につながっている。
論文 参考訳(メタデータ) (2022-08-07T16:23:33Z) - PAGER: Progressive Attribute-Guided Extendable Robust Image Generation [38.484332924924914]
本研究は,連続的部分空間学習(SSL)に基づく生成的モデリング手法を提案する。
文献のほとんどの生成モデルとは異なり,本手法では,基盤となるソース分布の解析や画像の合成にはニューラルネットワークを使用しない。
プログレッシブ誘導伸縮性画像生成(R)モデルと呼ばれるこの手法は、数学的透明性、プログレッシブコンテンツ生成、トレーニング時間の短縮、トレーニングサンプルの少ないロバストパフォーマンス、条件付き画像生成への拡張性に利点がある。
論文 参考訳(メタデータ) (2022-06-01T00:35:42Z) - StyleGAN-induced data-driven regularization for inverse problems [2.5138572116292686]
GAN(Generative Adversarial Network)の最近の進歩は、これまで生成できなかった高解像度画像の生成の可能性を広げている。
本研究では,事前学習したStyleGAN2ジェネレータの潜在能力を生かしたフレームワークを開発した。
画像インペイントと超解像の逆問題を考えると、提案手法は最先端のGANベースの画像再構成手法と競合し、時には優位であることを示す。
論文 参考訳(メタデータ) (2021-10-07T22:25:30Z) - BIGRoC: Boosting Image Generation via a Robust Classifier [27.66648389933265]
生成した画像の画質と分布の忠実度を改善するための一般的なモデルに依存しない手法を提案する。
BIGRoCと呼ばれるこの手法は、与えられたロバストな分類器の誘導による後処理手順に基づいている。
論文 参考訳(メタデータ) (2021-08-08T18:05:44Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
画像合成の学習は、広範囲のアプリケーションにまたがって一般化可能な顕著な階層的な視覚的特徴をもたらす可能性があることを示す。
生成的階層的特徴(Generative Hierarchical Feature, GH-Feat)と呼ばれるエンコーダが生成する視覚的特徴は、生成的タスクと識別的タスクの両方に強い伝達性を有する。
論文 参考訳(メタデータ) (2020-07-20T18:04:14Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
本稿では,不整合学習と高忠実度合成のためのID-GAN(Information-Distillation Generative Adrial Network)を提案する。
提案手法は, VAEモデルを用いて非交叉表現を学習し, 高忠実度合成のためのGAN生成器に追加のニュアンス変数で学習表現を蒸留する。
単純さにもかかわらず,提案手法は高効率であり,不整合表現を用いた最先端の手法に匹敵する画像生成品質を実現する。
論文 参考訳(メタデータ) (2020-01-13T14:39:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。