論文の概要: Data-Driven Optimization for Police Zone Design
- arxiv url: http://arxiv.org/abs/2104.00535v1
- Date: Tue, 30 Mar 2021 20:16:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-02 13:21:03.031254
- Title: Data-Driven Optimization for Police Zone Design
- Title(参考訳): 警察ゾーン設計のためのデータ駆動最適化
- Authors: Shixiang Zhu, He Wang, Yao Xie
- Abstract要約: 都市環境における警察パトロールゾーンの再設計のためのデータ駆動型フレームワークを提案する。
目的は、警察の作業負荷を地理的にバランスさせ、緊急呼び出しに対する応答時間を短縮することである。
ゾーンの再設計前後のデータを解析することにより,新しい設計により,優先度の高い911コールに対する応答時間が5.8%削減されたことを示す。
- 参考スコア(独自算出の注目度): 15.562554711183028
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a data-driven optimization framework for redesigning police patrol
zones in an urban environment. The objectives are to rebalance police workload
among geographical areas and to reduce response time to emergency calls. We
develop a stochastic model for police emergency response by integrating
multiple data sources, including police incidents reports, demographic surveys,
and traffic data. Using this stochastic model, we optimize zone redesign plans
using mixed-integer linear programming. Our proposed design was implemented by
the Atlanta Police Department in March 2019. By analyzing data before and after
the zone redesign, we show that the new design has reduced the response time to
high priority 911 calls by 5.8\% and the imbalance of police workload among
different zones by 43\%.
- Abstract(参考訳): 都市環境における警察パトロールゾーンの再設計のためのデータ駆動型最適化フレームワークを提案する。
目的は、警察の作業負荷を地理的にバランスさせ、緊急呼び出しに対する応答時間を短縮することである。
我々は,警察事故報告,人口統計調査,交通データなど複数のデータソースを統合することで,警察緊急対応のための確率モデルを開発する。
この確率モデルを用いて,混合整数線形計画を用いたゾーン再設計計画を最適化する。
提案した設計は,2019年3月にアトランタ警察署が実施した。
ゾーン再設計前後のデータを分析した結果, 優先度の高い911コールに対する応答時間を5.8\%削減し, 異なるゾーン間の警察作業負荷の不均衡を43\%削減した。
関連論文リスト
- Neural MP: A Generalist Neural Motion Planner [75.82675575009077]
運動計画問題にデータ駆動学習を大規模に適用することで,これを実現する。
提案手法は, シミュレーションの複雑なシーンを多数構築し, モーションプランナーから専門家のデータを収集し, 反応的なジェネラリストポリシーに抽出する。
我々は,4つの異なる環境における64の動作計画タスクについて,その方法の徹底的な評価を行う。
論文 参考訳(メタデータ) (2024-09-09T17:59:45Z) - An Attention-Based Multi-Context Convolutional Encoder-Decoder Neural Network for Work Zone Traffic Impact Prediction [6.14400858731508]
ワークゾーンは、非リカレント交通渋滞や道路事故の主な原因の1つである。
多様なプラットフォームからのワークゾーンとトラフィックデータの利用を向上させるデータ統合パイプラインを提案する。
計画された作業ゾーンイベントにおける交通速度と事故発生確率を予測するための新しい深層学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-31T17:38:49Z) - Predicting Traffic Congestion at Urban Intersections Using Data-Driven Modeling [0.0]
本研究は,米国の主要都市の交差点における混雑予測モデルの構築を目的とする。
データセットには、座標、通り名、日時、トラフィックメトリクスを含む27の機能が含まれている。
論文 参考訳(メタデータ) (2024-04-12T22:53:41Z) - Clustering Dynamics for Improved Speed Prediction Deriving from
Topographical GPS Registrations [0.0]
スパースGPSデータポイントとそれに関連する地形・道路設計特徴を用いた速度予測手法を提案する。
私たちのゴールは、地形とインフラの類似性を利用して、交通データがない地域での速度を予測する機械学習モデルをトレーニングできるかどうかを調べることです。
論文 参考訳(メタデータ) (2024-02-12T09:28:16Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Urban Regional Function Guided Traffic Flow Prediction [117.75679676806296]
メタデータとして各領域の機能を利用するPOI-MetaBlockという新しいモジュールを提案する。
我々のモジュールはトラフィックフロー予測の性能を大幅に改善し、メタデータを使用する最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-03-17T06:03:49Z) - Differentiable Spatial Planning using Transformers [87.90709874369192]
本研究では、長距離空間依存を計画して行動を生成する障害マップを与えられた空間計画変換器(SPT)を提案する。
エージェントが地上の真理マップを知らない環境では、エンド・ツー・エンドのフレームワークで事前訓練されたSPTを利用する。
SPTは、操作タスクとナビゲーションタスクの両方のすべてのセットアップにおいて、最先端の差別化可能なプランナーよりも優れています。
論文 参考訳(メタデータ) (2021-12-02T06:48:16Z) - The effect of differential victim crime reporting on predictive policing
systems [84.86615754515252]
本研究では, 被害者の犯罪報告率の違いが, 共通犯罪ホットスポット予測モデルにおいて, 結果の相違をもたらすことを示す。
以上の結果から, 犯罪報告率の差は, 高犯罪から低犯罪へ, 高犯罪・中犯罪・高報道へ, 予測ホットスポットの移動につながる可能性が示唆された。
論文 参考訳(メタデータ) (2021-01-30T01:57:22Z) - TLab: Traffic Map Movie Forecasting Based on HR-NET [23.40323690536007]
私たちのソリューションでは、手作りの機能はチャネルの形でモデルに入力されます。
予測精度に関しては、NeurIPS 2020、Traffic4cast Challengeで2位を獲得しました。
論文 参考訳(メタデータ) (2020-11-13T18:48:13Z) - Multi-officer Routing for Patrolling High Risk Areas Jointly Learned
from Check-ins, Crime and Incident Response Data [6.295207672539996]
我々は、チェックイン、犯罪、インシデント対応データ、およびPOI情報を用いて、複数の警察官に対する動的犯罪パトロール計画問題を定式化する。
本稿では,可能解の表現のための共同学習法と非ランダム最適化法を提案する。
提案手法の性能検証と実世界のデータセットを用いたいくつかの最先端手法との比較を行った。
論文 参考訳(メタデータ) (2020-07-31T23:33:14Z) - PnPNet: End-to-End Perception and Prediction with Tracking in the Loop [82.97006521937101]
我々は、自動運転車の文脈において、共同認識と運動予測の問題に取り組む。
我々は,入力センサデータとしてエンド・ツー・エンドのモデルであるNetを提案し,各ステップのオブジェクト追跡とその将来レベルを出力する。
論文 参考訳(メタデータ) (2020-05-29T17:57:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。