論文の概要: Clustering Dynamics for Improved Speed Prediction Deriving from
Topographical GPS Registrations
- arxiv url: http://arxiv.org/abs/2402.07507v1
- Date: Mon, 12 Feb 2024 09:28:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 14:56:08.361774
- Title: Clustering Dynamics for Improved Speed Prediction Deriving from
Topographical GPS Registrations
- Title(参考訳): 地形gps登録に基づく速度予測の改善のためのクラスタリングダイナミクス
- Authors: Sarah Almeida Carneiro (LIGM), Giovanni Chierchia (LIGM), Aurelie
Pirayre (IFPEN), Laurent Najman (LIGM)
- Abstract要約: スパースGPSデータポイントとそれに関連する地形・道路設計特徴を用いた速度予測手法を提案する。
私たちのゴールは、地形とインフラの類似性を利用して、交通データがない地域での速度を予測する機械学習モデルをトレーニングできるかどうかを調べることです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A persistent challenge in the field of Intelligent Transportation Systems is
to extract accurate traffic insights from geographic regions with scarce or no
data coverage. To this end, we propose solutions for speed prediction using
sparse GPS data points and their associated topographical and road design
features. Our goal is to investigate whether we can use similarities in the
terrain and infrastructure to train a machine learning model that can predict
speed in regions where we lack transportation data. For this we create a
Temporally Orientated Speed Dictionary Centered on Topographically Clustered
Roads, which helps us to provide speed correlations to selected feature
configurations. Our results show qualitative and quantitative improvement over
new and standard regression methods. The presented framework provides a fresh
perspective on devising strategies for missing data traffic analysis.
- Abstract(参考訳): インテリジェントトランスポーテーションシステムの分野における永続的な課題は、データカバレッジが乏しい、あるいは全くない地理的地域から正確なトラフィックインサイトを抽出することである。
そこで本研究では,GPSデータポイントとそれに関連する地形・道路設計特徴を用いた速度予測手法を提案する。
私たちのゴールは、地形とインフラの類似性を利用して、交通データがない地域での速度を予測する機械学習モデルをトレーニングできるかどうかを調べることです。
そのために,地理的にクラスタ化された道路を中心に,時間指向の速度辞書を作成して,選択した機能構成に速度相関を提供する。
その結果,新しい回帰法や標準回帰法よりも質的,定量的な改善が得られた。
提示されたフレームワークは、データトラフィック分析の欠如に対する戦略を考案する新しい視点を提供する。
関連論文リスト
- Graph Pruning Based Spatial and Temporal Graph Convolutional Network with Transfer Learning for Traffic Prediction [0.0]
本研究では,グラフプルーニングと転送学習の枠組みに基づく新しい時空間畳み込みネットワーク(TL-GPSTGN)を提案する。
その結果、単一のデータセット上でのTL-GPSTGNの異常な予測精度と、異なるデータセット間の堅牢なマイグレーション性能が示された。
論文 参考訳(メタデータ) (2024-09-25T00:59:23Z) - IBB Traffic Graph Data: Benchmarking and Road Traffic Prediction Model [0.24999074238880487]
道路交通渋滞予測はインテリジェント交通システムにおいて重要な要素である。
IBB Traffic Graphデータセットは、2451の異なる場所で収集されたセンサーデータをカバーしている。
本稿では,機能工学を通して時間的リンクを強化する道路交通予測モデルを提案する。
論文 参考訳(メタデータ) (2024-08-02T05:23:19Z) - SWMLP: Shared Weight Multilayer Perceptron for Car Trajectory Speed
Prediction using Road Topographical Features [0.0]
本研究では,大規模な履歴速度データとは無関係な速度予測手法を提案する。
その結果, 定性的, 定量的に, 標準回帰分析よりも有意な改善が認められた。
論文 参考訳(メタデータ) (2023-10-02T12:39:33Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
本稿では,グラフ学習戦略と一般的なグラフ畳み込みアルゴリズムの体系的なレビューを行う。
次に、最近提案された空間時間グラフネットワークモデルの長所と短所を包括的に分析する。
ディープラーニングフレームワークPyTorchを用いたSTG4Trafficという研究を構築し,2種類のトラフィックデータセットに対して,標準化されたスケーラブルなベンチマークを確立する。
論文 参考訳(メタデータ) (2023-07-02T06:56:52Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Deep Learning based Urban Vehicle Trajectory Analytics [1.3706331473063877]
この論文は、都市交通網における車両を指す「都市自動車軌道」に焦点を当てている。
本論文の目的は,都市自動車軌道分析のためのディープラーニングモデルを開発することである。
論文 参考訳(メタデータ) (2021-11-15T01:44:18Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
移動車に搭載されたカメラから車両の速度を推定する問題を考察する。
そこで本研究では,まずオフ・ザ・シェルフ・トラッカーを用いて車両バウンディングボックスを抽出し,その後,小型ニューラルネットワークを用いて車両速度を回帰する2段階のアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-16T13:10:27Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
近年、古典的占有グリッドマップのアプローチが動的占有グリッドマップに拡張されている。
本稿では,従来のアプローチのさらなる発展について述べる。
複数のレーダセンサのデータを融合し、グリッドベースの物体追跡・マッピング手法を適用する。
論文 参考訳(メタデータ) (2020-08-09T09:26:30Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。