RLAD: Time Series Anomaly Detection through Reinforcement Learning and
Active Learning
- URL: http://arxiv.org/abs/2104.00543v1
- Date: Wed, 31 Mar 2021 15:21:15 GMT
- Title: RLAD: Time Series Anomaly Detection through Reinforcement Learning and
Active Learning
- Authors: Tong Wu and Jorge Ortiz
- Abstract summary: We introduce a new semi-supervised, time series anomaly detection algorithm.
It uses deep reinforcement learning and active learning to efficiently learn and adapt to anomalies in real-world time series data.
It requires no manual tuning of parameters and outperforms all state-of-art methods we compare with.
- Score: 17.089402177923297
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new semi-supervised, time series anomaly detection algorithm
that uses deep reinforcement learning (DRL) and active learning to efficiently
learn and adapt to anomalies in real-world time series data. Our model - called
RLAD - makes no assumption about the underlying mechanism that produces the
observation sequence and continuously adapts the detection model based on
experience with anomalous patterns. In addition, it requires no manual tuning
of parameters and outperforms all state-of-art methods we compare with, both
unsupervised and semi-supervised, across several figures of merit. More
specifically, we outperform the best unsupervised approach by a factor of 1.58
on the F1 score, with only 1% of labels and up to around 4.4x on another
real-world dataset with only 0.1% of labels. We compare RLAD with seven
deep-learning based algorithms across two common anomaly detection datasets
with up to around 3M data points and between 0.28% to 2.65% anomalies.We
outperform all of them across several important performance metrics.
Related papers
- Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - Do Ensembling and Meta-Learning Improve Outlier Detection in Randomized
Controlled Trials? [0.0]
We evaluate 6 modern machine learning-based outlier detection algorithms on the task of identifying irregular data in 838 datasets from 7 real-world MCRCTs.
Our results reinforce key findings from prior work in the outlier detection literature on data from other domains.
We propose the Meta-learned Probabilistic Ensemble (MePE), a simple algorithm for aggregating the predictions of multiple unsupervised models.
arXiv Detail & Related papers (2023-11-09T16:05:38Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Adaptive Memory Networks with Self-supervised Learning for Unsupervised
Anomaly Detection [54.76993389109327]
Unsupervised anomaly detection aims to build models to detect unseen anomalies by only training on the normal data.
We propose a novel approach called Adaptive Memory Network with Self-supervised Learning (AMSL) to address these challenges.
AMSL incorporates a self-supervised learning module to learn general normal patterns and an adaptive memory fusion module to learn rich feature representations.
arXiv Detail & Related papers (2022-01-03T03:40:21Z) - Anomaly Rule Detection in Sequence Data [2.3757190901941736]
We present a new anomaly detection framework called DUOS that enables Discovery of Utility-aware Outlier Sequential rules from a set of sequences.
In this work, we incorporate both the anomalousness and utility of a group, and then introduce the concept of utility-aware outlier rule (UOSR)
arXiv Detail & Related papers (2021-11-29T23:52:31Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - NVAE-GAN Based Approach for Unsupervised Time Series Anomaly Detection [19.726089445453734]
Time series anomaly detection is a common but challenging task in many industries.
It is difficult to detect anomalies in time series with high accuracy, due to noisy data collected from real world.
We propose our anomaly detection model: Time series to Image VAE (T2IVAE)
arXiv Detail & Related papers (2021-01-08T08:35:15Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.