論文の概要: Model Selection's Disparate Impact in Real-World Deep Learning
Applications
- arxiv url: http://arxiv.org/abs/2104.00606v1
- Date: Thu, 1 Apr 2021 16:37:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-02 20:15:13.700736
- Title: Model Selection's Disparate Impact in Real-World Deep Learning
Applications
- Title(参考訳): 実世界深層学習におけるモデル選択の影響
- Authors: Jessica Zosa Forde, A. Feder Cooper, Kweku Kwegyir-Aggrey, Chris De Sa
and Michael Littman
- Abstract要約: アルゴリズムの公平性は、自動決定結果におけるバイアスデータの役割を強調している。
このような偏見の1つ、モデル選択における人間の嗜好は、人口集団間で異なる影響を及ぼす役割において、未解明のままである、と我々は主張する。
- 参考スコア(独自算出の注目度): 3.924854655504237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic fairness has emphasized the role of biased data in automated
decision outcomes. Recently, there has been a shift in attention to sources of
bias that implicate fairness in other stages in the ML pipeline. We contend
that one source of such bias, human preferences in model selection, remains
under-explored in terms of its role in disparate impact across demographic
groups. Using a deep learning model trained on real-world medical imaging data,
we verify our claim empirically and argue that choice of metric for model
comparison can significantly bias model selection outcomes.
- Abstract(参考訳): アルゴリズム的公平性は、自動決定結果におけるバイアスデータの役割を強調している。
最近、MLパイプラインの他のステージにおける公平性に関連するバイアスの源泉に注意が向けられている。
このような偏見の1つ、モデル選択における人間の嗜好は、人口集団間で異なる影響を及ぼす役割において、未解明のままである、と我々は主張する。
実世界の医療画像データに基づいてトレーニングされた深層学習モデルを用いて、我々の主張を実証的に検証し、モデル比較のためのメトリクスの選択は、モデル選択の結果を著しくバイアスできると主張する。
関連論文リスト
- FairGridSearch: A Framework to Compare Fairness-Enhancing Models [0.0]
本稿では、二項分類に焦点を当て、公平性向上モデルを比較するための新しいフレームワークであるFairGridSearchを提案する。
この研究は、FairGridSearchを3つの一般的なデータセット(Adult, COMPAS, German Credit)に適用し、計量選択、基底推定器の選択、分類しきい値がモデルフェアネスに与える影響を分析する。
論文 参考訳(メタデータ) (2024-01-04T10:29:02Z) - Improving Bias Mitigation through Bias Experts in Natural Language
Understanding [10.363406065066538]
補助モデルと主モデルの間に二項分類器を導入するデバイアス化フレームワークを提案する。
提案手法は補助モデルのバイアス識別能力を向上させる。
論文 参考訳(メタデータ) (2023-12-06T16:15:00Z) - Bias in Evaluation Processes: An Optimization-Based Model [31.790546767744917]
本研究では,タスクに対する個人の実効性分布から観察された分布への変換として評価過程をモデル化する。
本研究では,本モデルから生じる分布を特徴付けるとともに,観測された分布に対するパラメータの影響について検討する。
実世界のデータセットを組み込むことで、我々のモデルを実証的に検証し、下流選択タスクにおける介入の効果を研究する。
論文 参考訳(メタデータ) (2023-10-26T15:45:01Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Subjectivity in Unsupervised Machine Learning Model Selection [2.9370710299422598]
本研究では、モデル選択に関わる主観性を調べる例として、隠れマルコフモデルを用いる。
主観性の源泉には、異なる基準とメトリクスの重要性についての異なる意見、モデルがどのように同化されるべきなのか、データセットのサイズがモデル選択にどのように影響するかについての異なる見解が含まれる。
論文 参考訳(メタデータ) (2023-09-01T01:40:58Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。