Remote Sensing Image Classification with the SEN12MS Dataset
- URL: http://arxiv.org/abs/2104.00704v1
- Date: Thu, 1 Apr 2021 18:15:16 GMT
- Title: Remote Sensing Image Classification with the SEN12MS Dataset
- Authors: Michael Schmitt, Yu-Lun Wu
- Abstract summary: We present a classification-oriented conversion of the SEN12MS dataset.
Using that, we provide results for several baseline models based on two standard CNN architectures and different input data configurations.
Our results support the benchmarking of remote sensing image classification and provide insights to the benefit of multi-spectral data and multi-sensor data fusion over conventional RGB imagery.
- Score: 1.7894377200944511
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image classification is one of the main drivers of the rapid developments in
deep learning with convolutional neural networks for computer vision. So is the
analogous task of scene classification in remote sensing. However, in contrast
to the computer vision community that has long been using well-established,
large-scale standard datasets to train and benchmark high-capacity models, the
remote sensing community still largely relies on relatively small and often
application-dependend datasets, thus lacking comparability. With this letter,
we present a classification-oriented conversion of the SEN12MS dataset. Using
that, we provide results for several baseline models based on two standard CNN
architectures and different input data configurations. Our results support the
benchmarking of remote sensing image classification and provide insights to the
benefit of multi-spectral data and multi-sensor data fusion over conventional
RGB imagery.
Related papers
- Analysis of Classifier Training on Synthetic Data for Cross-Domain Datasets [4.696575161583618]
This study focuses on camera-based traffic sign recognition applications for advanced driver assistance systems and autonomous driving.
The proposed augmentation pipeline of synthetic datasets includes novel augmentation processes such as structured shadows and gaussian specular highlights.
Experiments showed that a synthetic image-based approach outperforms in most cases real image-based training when applied to cross-domain test datasets.
arXiv Detail & Related papers (2024-10-30T07:11:41Z) - Rethinking Transformers Pre-training for Multi-Spectral Satellite
Imagery [78.43828998065071]
Recent advances in unsupervised learning have demonstrated the ability of large vision models to achieve promising results on downstream tasks.
Such pre-training techniques have also been explored recently in the remote sensing domain due to the availability of large amount of unlabelled data.
In this paper, we re-visit transformers pre-training and leverage multi-scale information that is effectively utilized with multiple modalities.
arXiv Detail & Related papers (2024-03-08T16:18:04Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Self-Supervised In-Domain Representation Learning for Remote Sensing
Image Scene Classification [1.0152838128195465]
Transferring the ImageNet pre-trained weights to the various remote sensing tasks has produced acceptable results.
Recent research has demonstrated that self-supervised learning methods capture visual features that are more discriminative and transferable.
We are motivated by these facts to pre-train the in-domain representations of remote sensing imagery using contrastive self-supervised learning.
arXiv Detail & Related papers (2023-02-03T15:03:07Z) - Multi-Spectral Image Classification with Ultra-Lean Complex-Valued
Models [28.798100220715686]
Multi-spectral imagery is invaluable for remote sensing due to different spectral signatures exhibited by materials.
We apply complex-valued co-domain symmetric models to classify real-valued MSI images.
Our work is the first to demonstrate the value of complex-valued deep learning on real-valued MSI data.
arXiv Detail & Related papers (2022-11-21T19:01:53Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - Remote Sensing Image Classification using Transfer Learning and
Attention Based Deep Neural Network [59.86658316440461]
We propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme.
The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7%.
arXiv Detail & Related papers (2022-06-20T10:05:38Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z) - Looking Outside the Window: Wider-Context Transformer for the Semantic
Segmentation of High-Resolution Remote Sensing Images [18.161847218988964]
We propose a Wider-Context Network (WiCNet) for the semantic segmentation of High-Resolution (HR) Remote Sensing Images (RSIs)
In the WiCNet, apart from a conventional feature extraction network, an extra context branch is designed to explicitly model the context information in a larger image area.
The information between the two branches is communicated through a Context Transformer, which is a novel design derived from the Vision Transformer to model the long-range context correlations.
arXiv Detail & Related papers (2021-06-29T23:41:54Z) - Remote Sensing Image Scene Classification with Self-Supervised Paradigm
under Limited Labeled Samples [11.025191332244919]
We introduce new self-supervised learning (SSL) mechanism to obtain the high-performance pre-training model for RSIs scene classification from large unlabeled data.
Experiments on three commonly used RSIs scene classification datasets demonstrated that this new learning paradigm outperforms the traditional dominant ImageNet pre-trained model.
The insights distilled from our studies can help to foster the development of SSL in the remote sensing community.
arXiv Detail & Related papers (2020-10-02T09:27:19Z) - X-ModalNet: A Semi-Supervised Deep Cross-Modal Network for
Classification of Remote Sensing Data [69.37597254841052]
We propose a novel cross-modal deep-learning framework called X-ModalNet.
X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network.
We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods.
arXiv Detail & Related papers (2020-06-24T15:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.