論文の概要: GABO: Graph Augmentations with Bi-level Optimization
- arxiv url: http://arxiv.org/abs/2104.00722v1
- Date: Thu, 1 Apr 2021 19:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 14:03:44.631758
- Title: GABO: Graph Augmentations with Bi-level Optimization
- Title(参考訳): GABO:バイレベル最適化によるグラフ拡張
- Authors: Heejung W. Chung, Avoy Datta, Chris Waites
- Abstract要約: 本研究では,Ogbg-molhivデータセット上のグラフ分類問題に取り組むために,二段階最適化という手法を適用する。
GIN+virtual classifierでROCAUCスコア77.77 %を達成した。
このフレームワークは、GIN層拡張ジェネレータとバイアス変換を組み合わせて、最新のFLAG拡張を使用して拡張された同じ分類器を上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data augmentation refers to a wide range of techniques for improving model
generalization by augmenting training examples. Oftentimes such methods require
domain knowledge about the dataset at hand, spawning a plethora of recent
literature surrounding automated techniques for data augmentation. In this work
we apply one such method, bilevel optimization, to tackle the problem of graph
classification on the ogbg-molhiv dataset. Our best performing augmentation
achieved a test ROCAUC score of 77.77 % with a GIN+virtual classifier, which
makes it the most effective augmenter for this classifier on the leaderboard.
This framework combines a GIN layer augmentation generator with a bias
transformation and outperforms the same classifier augmented using the
state-of-the-art FLAG augmentation.
- Abstract(参考訳): データ拡張とは、トレーニング例の強化によるモデル一般化を改善するための、幅広い技術を指す。
多くの場合、そのような手法はデータセットに関するドメイン知識を必要とし、データ拡張のための自動化技術を取り巻く最近の多くの文献を生み出します。
本研究では,Ogbg-molhivデータセット上のグラフ分類問題に取り組むために,二段階最適化という手法を適用する。
GIN+virtual classifierではROCAUCスコアが77.77 %に達し,この分類器はリーダボード上で最も有効である。
このフレームワークは、GIN層拡張ジェネレータとバイアス変換を結合し、最先端のFLAG拡張を使用して強化された同一の分類器を上回る。
関連論文リスト
- Explanation-Preserving Augmentation for Semi-Supervised Graph Representation Learning [13.494832603509897]
グラフ表現学習(GRL)は,ノード分類やグラフ分類といった幅広いタスクのパフォーマンス向上を実現するための有効な手法として登場した。
本稿では,拡張グラフの生成にグラフ説明手法を活用する新しい手法である Explanation-Preserving Augmentation (EPA) を提案する。
EPAはまず、グラフのセマンティクスに最も関係のある部分構造(説明)を推測するために、グラフ説明器を訓練するために少数のラベルを使用する。
論文 参考訳(メタデータ) (2024-10-16T15:18:03Z) - Language Models are Graph Learners [70.14063765424012]
言語モデル(LM)は、グラフニューラルネットワーク(GNN)やグラフトランスフォーマー(GT)など、ドメイン固有のモデルの優位性に挑戦している。
本稿では,ノード分類タスクにおける最先端のGNNに匹敵する性能を実現するために,既製のLMを有効活用する手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T08:27:54Z) - Domain Generalization by Rejecting Extreme Augmentations [13.114457707388283]
ドメイン外およびドメインの一般化設定では、データ拡張が顕著で堅牢なパフォーマンス向上をもたらすことを示す。
i)標準データ拡張変換の均一サンプリング,(ii)ドメイン外での作業において期待される高いデータ分散を考慮した強度変換,(iii)トレーニングを損なうような極端な変換を拒否する新たな報酬関数を考案する,という簡単なトレーニング手順を提案する。
論文 参考訳(メタデータ) (2023-10-10T14:46:22Z) - GraphLearner: Graph Node Clustering with Fully Learnable Augmentation [76.63963385662426]
Contrastive Deep Graph Clustering (CDGC)は、異なるクラスタにノードをグループ化するために、コントラスト学習のパワーを活用する。
我々は、GraphLearnerと呼ばれる、完全学習可能な拡張を備えたグラフノードクラスタリングを提案する。
学習可能な拡張器を導入し、CDGCのための高品質でタスク固有の拡張サンプルを生成する。
論文 参考訳(メタデータ) (2022-12-07T10:19:39Z) - Augmentations in Hypergraph Contrastive Learning: Fabricated and
Generative [126.0985540285981]
我々は、ハイパーグラフニューラルネットワークの一般化性を改善するために、画像/グラフからの対照的な学習アプローチ(ハイパーGCLと呼ぶ)を適用する。
我々は、高次関係を符号化したハイパーエッジを増大させる2つのスキームを作成し、グラフ構造化データから3つの拡張戦略を採用する。
拡張ビューを生成するためのハイパーグラフ生成モデルを提案し、次に、ハイパーグラフ拡張とモデルパラメータを協調的に学習するエンド・ツー・エンドの微分可能なパイプラインを提案する。
論文 参考訳(メタデータ) (2022-10-07T20:12:20Z) - Graph Contrastive Learning Automated [94.41860307845812]
グラフコントラスト学習(GraphCL)は、有望な表現学習性能とともに登場した。
GraphCLのヒンジがアドホックなデータ拡張に与える影響は、データセット毎に手動で選択する必要がある。
本稿では,グラフデータ上でGraphCLを実行する際に,データ拡張を自動的に,適応的に動的に選択する統合バイレベル最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-10T16:35:27Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Data Augmentation for Graph Neural Networks [32.24311481878144]
半教師付きノード分類を改善する文脈において,グラフニューラルネットワーク(GNN)のグラフデータ拡張について検討した。
本研究は,階層内エッジの促進とグラフ構造におけるクラス間エッジの復号化のために,クラス-ホモフィル構造を効果的に符号化できることを示唆する。
我々の主な貢献はGAugグラフデータ拡張フレームワークを導入し、これらの洞察を活用してエッジ予測によるGNNベースのノード分類の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-11T21:17:56Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
本稿では,新たなノードやエッジを自動的に拡張して,高密度サブグラフ内のラベル類似性を向上する,新しい前処理手法であるElectoral College(ELCO)を提案する。
テストされたすべての設定において、我々の手法はベースモデルの平均スコアを4.7ポイントの広いマージンで引き上げるとともに、常に最先端のモデルよりも優れています。
論文 参考訳(メタデータ) (2020-06-10T14:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。