Coalitional strategies for efficient individual prediction explanation
- URL: http://arxiv.org/abs/2104.00765v1
- Date: Thu, 1 Apr 2021 21:00:23 GMT
- Title: Coalitional strategies for efficient individual prediction explanation
- Authors: Gabriel Ferrettini (1), Elodie Escriva (2), Julien Aligon (1),
Jean-Baptiste Excoffier (2), Chantal Soul\'e-Dupuy (1) ((1) Universit\'e de
Toulouse-Capitole, IRIT CNRS/UMR 5505, (2) Kaduceo)
- Abstract summary: This paper provides methods based on the detection of relevant groups of attributes -- named coalitions -- influencing a prediction.
Our results show that these coalitional methods are more efficient than existing ones such as SHapley Additive exPlanation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As Machine Learning (ML) is now widely applied in many domains, in both
research and industry, an understanding of what is happening inside the black
box is becoming a growing demand, especially by non-experts of these models.
Several approaches had thus been developed to provide clear insights of a model
prediction for a particular observation but at the cost of long computation
time or restrictive hypothesis that does not fully take into account
interaction between attributes. This paper provides methods based on the
detection of relevant groups of attributes -- named coalitions -- influencing a
prediction and compares them with the literature. Our results show that these
coalitional methods are more efficient than existing ones such as SHapley
Additive exPlanation (SHAP). Computation time is shortened while preserving an
acceptable accuracy of individual prediction explanations. Therefore, this
enables wider practical use of explanation methods to increase trust between
developed ML models, end-users, and whoever impacted by any decision where
these models played a role.
Related papers
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - Evaluating and Explaining Large Language Models for Code Using Syntactic
Structures [74.93762031957883]
This paper introduces ASTxplainer, an explainability method specific to Large Language Models for code.
At its core, ASTxplainer provides an automated method for aligning token predictions with AST nodes.
We perform an empirical evaluation on 12 popular LLMs for code using a curated dataset of the most popular GitHub projects.
arXiv Detail & Related papers (2023-08-07T18:50:57Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Grouping Shapley Value Feature Importances of Random Forests for
explainable Yield Prediction [0.8543936047647136]
We explain the concept of Shapley values directly computed for groups of features and introduce an algorithm to compute them efficiently on tree structures.
We provide a blueprint for designing swarm plots that combine many local explanations for global understanding.
arXiv Detail & Related papers (2023-04-14T13:03:33Z) - Functional Ensemble Distillation [18.34081591772928]
We investigate how to best distill an ensemble's predictions using an efficient model.
We find that learning the distilled model via a simple augmentation scheme in the form of mixup augmentation significantly boosts the performance.
arXiv Detail & Related papers (2022-06-05T14:07:17Z) - ReLACE: Reinforcement Learning Agent for Counterfactual Explanations of
Arbitrary Predictive Models [6.939617874336667]
We introduce a model-agnostic algorithm to generate optimal counterfactual explanations.
Our method is easily applied to any black-box model, as this resembles the environment that the DRL agent interacts with.
In addition, we develop an algorithm to extract explainable decision rules from the DRL agent's policy, so as to make the process of generating CFs itself transparent.
arXiv Detail & Related papers (2021-10-22T17:08:49Z) - Tree-based local explanations of machine learning model predictions,
AraucanaXAI [2.9660372210786563]
A tradeoff between performance and intelligibility is often to be faced, especially in high-stakes applications like medicine.
We propose a novel methodological approach for generating explanations of the predictions of a generic ML model.
arXiv Detail & Related papers (2021-10-15T17:39:19Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - TimeSHAP: Explaining Recurrent Models through Sequence Perturbations [3.1498833540989413]
Recurrent neural networks are a standard building block in numerous machine learning domains.
The complex decision-making in these models is seen as a black-box, creating a tension between accuracy and interpretability.
In this work, we contribute to filling these gaps by presenting TimeSHAP, a model-agnostic recurrent explainer.
arXiv Detail & Related papers (2020-11-30T19:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.