AALF: Almost Always Linear Forecasting
- URL: http://arxiv.org/abs/2409.10142v2
- Date: Thu, 16 Jan 2025 12:29:28 GMT
- Title: AALF: Almost Always Linear Forecasting
- Authors: Matthias Jakobs, Thomas Liebig,
- Abstract summary: We argue that simple models are good enough most of the time, and that forecasting performance could be improved by choosing a Deep Learning method only for few, important predictions.
An empirical study on various real-world datasets shows that our selection methodology performs comparable to state-of-the-art online model selections methods in most cases.
We find that almost always choosing a simple autoregressive linear model for forecasting results in competitive performance.
- Score: 3.336367986372977
- License:
- Abstract: Recent works for time-series forecasting more and more leverage the high predictive power of Deep Learning models. With this increase in model complexity, however, comes a lack in understanding of the underlying model decision process, which is problematic for high-stakes application scenarios. At the same time, simple, interpretable forecasting methods such as ARIMA still perform very well, sometimes on-par, with Deep Learning approaches. We argue that simple models are good enough most of the time, and that forecasting performance could be improved by choosing a Deep Learning method only for few, important predictions, increasing the overall interpretability of the forecasting process. In this context, we propose a novel online model selection framework which learns to identify these predictions. An extensive empirical study on various real-world datasets shows that our selection methodology performs comparable to state-of-the-art online model selections methods in most cases while being significantly more interpretable. We find that almost always choosing a simple autoregressive linear model for forecasting results in competitive performance, suggesting that the need for opaque black-box models in time-series forecasting might be smaller than recent works would suggest.
Related papers
- Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Plan To Predict: Learning an Uncertainty-Foreseeing Model for
Model-Based Reinforcement Learning [32.24146877835396]
We propose emphPlan To Predict (P2P), a framework that treats the model rollout process as a sequential decision making problem.
We show that P2P achieves state-of-the-art performance on several challenging benchmark tasks.
arXiv Detail & Related papers (2023-01-20T10:17:22Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Do We Really Need Deep Learning Models for Time Series Forecasting? [4.2698418800007865]
Time series forecasting is a crucial task in machine learning, as it has a wide range of applications.
Deep learning and matrix factorization models have been recently proposed to tackle the same problem with more competitive performance.
In this paper, we try to answer whether these highly complex deep learning models are without alternative.
arXiv Detail & Related papers (2021-01-06T16:18:04Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Graph Neural Networks for Improved El Ni\~no Forecasting [0.009620910657090186]
We propose an application of Graph Neural Networks (GNN) to forecast El Nino-Southern Oscillation (ENSO) at long lead times.
Preliminary results are promising and outperform state-of-the-art systems for projections 1 and 3 months ahead.
arXiv Detail & Related papers (2020-12-02T23:40:53Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.