Unconstrained Face Recognition using ASURF and Cloud-Forest Classifier
optimized with VLAD
- URL: http://arxiv.org/abs/2104.00842v1
- Date: Fri, 2 Apr 2021 01:26:26 GMT
- Title: Unconstrained Face Recognition using ASURF and Cloud-Forest Classifier
optimized with VLAD
- Authors: A Vinay, Aviral Joshi, Hardik Mahipal Surana, Harsh Garg, K N
BalasubramanyaMurthy, S Natarajan
- Abstract summary: The paper posits a computationally-efficient algorithm for multi-class facial image classification in which images are constrained with translation, rotation, scale, color, illumination and affine distortion.
The proposed method aims at improving the accuracy and the time taken for face recognition systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper posits a computationally-efficient algorithm for multi-class facial
image classification in which images are constrained with translation,
rotation, scale, color, illumination and affine distortion. The proposed method
is divided into five main building blocks including Haar-Cascade for face
detection, Bilateral Filter for image preprocessing to remove unwanted noise,
Affine Speeded-Up Robust Features (ASURF) for keypoint detection and
description, Vector of Locally Aggregated Descriptors (VLAD) for feature
quantization and Cloud Forest for image classification. The proposed method
aims at improving the accuracy and the time taken for face recognition systems.
The usage of the Cloud Forest algorithm as a classifier on three benchmark
datasets, namely the FACES95, FACES96 and ORL facial datasets, showed promising
results. The proposed methodology using Cloud Forest algorithm successfully
improves the recognition model by 2-12\% when differentiated against other
ensemble techniques like the Random Forest classifier depending upon the
dataset used.
Related papers
- MaskInversion: Localized Embeddings via Optimization of Explainability Maps [49.50785637749757]
MaskInversion generates a context-aware embedding for a query image region specified by a mask at test time.
It can be used for a broad range of tasks, including open-vocabulary class retrieval, referring expression comprehension, as well as for localized captioning and image generation.
arXiv Detail & Related papers (2024-07-29T14:21:07Z) - DeepClean: Integrated Distortion Identification and Algorithm Selection for Rectifying Image Corruptions [1.8024397171920883]
We propose a two-level sequential planning approach for automated image distortion classification and rectification.
The advantage of our approach is its dynamic reconfiguration, conditioned on the input image and generalisability to unseen candidate algorithms at inference time.
arXiv Detail & Related papers (2024-07-23T08:57:11Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - An Explainable Model-Agnostic Algorithm for CNN-based Biometrics
Verification [55.28171619580959]
This paper describes an adaptation of the Local Interpretable Model-Agnostic Explanations (LIME) AI method to operate under a biometric verification setting.
arXiv Detail & Related papers (2023-07-25T11:51:14Z) - Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues [61.37306431455152]
We propose a novel Hierarchical Forgery for Multi-modality Face Forgery Detection (HFC-MFFD)
The HFC-MFFD learns robust patches-based hybrid representation to enhance forgery authentication in multiple-modality scenarios.
The specific hierarchical face forgery is proposed to alleviate the class imbalance problem and further boost detection performance.
arXiv Detail & Related papers (2022-12-30T10:54:29Z) - New wrapper method based on normalized mutual information for dimension
reduction and classification of hyperspectral images [0.0]
We propose a new wrapper method based on normalized mutual information (NMI) and error probability (PE)
Experiments have been performed on two challenging hyperspectral benchmarks datasets captured by the NASA's Airborne Visible/Infrared Imaging Spectrometer Sensor (AVIRIS)
arXiv Detail & Related papers (2022-10-25T21:17:11Z) - Embedding contrastive unsupervised features to cluster in- and
out-of-distribution noise in corrupted image datasets [18.19216557948184]
Using search engines for web image retrieval is a tempting alternative to manual curation when creating an image dataset.
Their main drawback remains the proportion of incorrect (noisy) samples retrieved.
We propose a two stage algorithm starting with a detection step where we use unsupervised contrastive feature learning.
We find that the alignment and uniformity principles of contrastive learning allow OOD samples to be linearly separated from ID samples on the unit hypersphere.
arXiv Detail & Related papers (2022-07-04T16:51:56Z) - Hierarchical Convolutional Neural Network with Feature Preservation and
Autotuned Thresholding for Crack Detection [5.735035463793008]
Drone imagery is increasingly used in automated inspection for infrastructure surface defects.
This paper proposes a deep learning approach using hierarchical convolutional neural networks with feature preservation.
The proposed technique is then applied to identify surface cracks on the surface of roads, bridges or pavements.
arXiv Detail & Related papers (2021-04-21T13:07:58Z) - Convolutional Neural Networks from Image Markers [62.997667081978825]
Feature Learning from Image Markers (FLIM) was recently proposed to estimate convolutional filters, with no backpropagation, from strokes drawn by a user on very few images.
This paper extends FLIM for fully connected layers and demonstrates it on different image classification problems.
The results show that FLIM-based convolutional neural networks can outperform the same architecture trained from scratch by backpropagation.
arXiv Detail & Related papers (2020-12-15T22:58:23Z) - Automatic Radish Wilt Detection Using Image Processing Based Techniques
and Machine Learning Algorithm [3.4392739159262145]
We propose a segmentation and extraction-based technique to detect fusarium wilt in radish crops.
Recent wilt detection algorithms are either based on image processing techniques or conventional machine learning algorithms.
Our methodology is based on a hybrid algorithm, which combines image processing and machine learning.
arXiv Detail & Related papers (2020-09-01T01:37:01Z) - Residual-Sparse Fuzzy $C$-Means Clustering Incorporating Morphological
Reconstruction and Wavelet frames [146.63177174491082]
Fuzzy $C$-Means (FCM) algorithm incorporates a morphological reconstruction operation and a tight wavelet frame transform.
We present an improved FCM algorithm by imposing an $ell_0$ regularization term on the residual between the feature set and its ideal value.
Experimental results reported for synthetic, medical, and color images show that the proposed algorithm is effective and efficient, and outperforms other algorithms.
arXiv Detail & Related papers (2020-02-14T10:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.