論文の概要: The CSO Classifier: Ontology-Driven Detection of Research Topics in
Scholarly Articles
- arxiv url: http://arxiv.org/abs/2104.00948v1
- Date: Fri, 2 Apr 2021 09:02:32 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-05 20:22:46.854434
- Title: The CSO Classifier: Ontology-Driven Detection of Research Topics in
Scholarly Articles
- Title(参考訳): CSO分類器:学術論文におけるオントロジーによる研究トピックの検出
- Authors: Angelo A. Salatino, Francesco Osborne, Thiviyan Thanapalasingam,
Enrico Motta
- Abstract要約: コンピュータサイエンスオントロジー(CSO)に基づく研究論文の自動分類のための新しい教師なしアプローチを紹介します。
CSOは、研究論文(タイトル、抽象、キーワード)に関連するメタデータを入力として取り、オントロジーから引き出された研究概念の選択を返します。
このアプローチは、手作業による注釈付き記事のゴールドスタンダードで評価され、代替方法よりも大幅に改善されました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classifying research papers according to their research topics is an
important task to improve their retrievability, assist the creation of smart
analytics, and support a variety of approaches for analysing and making sense
of the research environment. In this paper, we present the CSO Classifier, a
new unsupervised approach for automatically classifying research papers
according to the Computer Science Ontology (CSO), a comprehensive ontology of
re-search areas in the field of Computer Science. The CSO Classifier takes as
input the metadata associated with a research paper (title, abstract, keywords)
and returns a selection of research concepts drawn from the ontology. The
approach was evaluated on a gold standard of manually annotated articles
yielding a significant improvement over alternative methods.
- Abstract(参考訳): 研究論文を研究トピックに従って分類することは、その検索性を改善し、スマート分析の作成を支援し、研究環境を分析・理解するための様々なアプローチを支援するための重要な課題である。
本稿では,コンピュータ科学分野における再研究領域の包括的オントロジーであるcomputer science ontology (cso) に基づいて,研究論文を自動的に分類する新しい教師なしアプローチであるcso分類器を提案する。
CSO分類器は、研究論文(タイトル、抽象、キーワード)に関連するメタデータを入力として、オントロジーから引き出された研究概念の選択を返す。
このアプローチは、手作業による注釈付記事の金本位制で評価され、代替方法よりも大幅に改善した。
関連論文リスト
- Automating Bibliometric Analysis with Sentence Transformers and Retrieval-Augmented Generation (RAG): A Pilot Study in Semantic and Contextual Search for Customized Literature Characterization for High-Impact Urban Research [2.1728621449144763]
文献分析は、都市科学における研究動向、スコープ、影響を理解するために不可欠である。
キーワード検索に依存する伝統的な手法は、記事のタイトルやキーワードに明記されていない価値ある洞察を明らかにするのに失敗することが多い。
我々は、生成AIモデル、特にトランスフォーマーとレトリーバル拡張生成(RAG)を活用して、バイオロメトリ分析の自動化と強化を行う。
論文 参考訳(メタデータ) (2024-10-08T05:13:27Z) - A Survey on Knowledge Organization Systems of Research Fields: Resources and Challenges [0.0]
知識組織システム(KOS)は、情報の分類、管理、検索において基本的な役割を果たす。
本稿は、現在のKOSに関する総合的な研究成果を学術分野に提示することを目的としている。
我々は、スコープ、構造、使用法、および他のKOSへのリンクの5つの主要な次元に基づいて45のKOSを分析した。
論文 参考訳(メタデータ) (2024-09-06T17:54:43Z) - Reconciling Methodological Paradigms: Employing Large Language Models as Novice Qualitative Research Assistants in Talent Management Research [1.0949553365997655]
本研究では,RAGに基づくLarge Language Models (LLMs) を用いた面接文の解析手法を提案する。
この研究の斬新さは、初歩的な研究助手として機能するLSMによって強化された研究調査をストラテジー化することにある。
以上の結果から, LLM拡張RAGアプローチは, 手動で生成したトピックと比較して, 興味のあるトピックを抽出できることが示唆された。
論文 参考訳(メタデータ) (2024-08-20T17:49:51Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
オントロジはドメイン知識とメタデータを表現するために広く使われている。
1つの簡単な解決策は、統計分析と機械学習を統合することである。
埋め込みに関する多くの論文が出版されているが、体系的なレビューの欠如により、研究者はこの分野の包括的な理解を妨げている。
論文 参考訳(メタデータ) (2024-06-16T14:49:19Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
本稿では,研究者にパーソナライズされた効率的な調査支援を目的とした会話システムであるSurveyAgentを紹介する。
SurveyAgentは3つの重要なモジュールを統合している。文書を整理するための知識管理、関連する文献を発見するための勧告、より深いレベルでコンテンツを扱うためのクエリ回答だ。
本評価は,研究活動の合理化におけるSurveyAgentの有効性を実証し,研究者の科学文献との交流を促進する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-09T15:01:51Z) - Incremental hierarchical text clustering methods: a review [49.32130498861987]
本研究の目的は,階層的および漸進的クラスタリング技術の解析である。
本研究の主な貢献は、文書クラスタリングのテキスト化を目的とした、2010年から2018年にかけて出版された研究で使用されるテクニックの組織化と比較である。
論文 参考訳(メタデータ) (2023-12-12T22:27:29Z) - Systematic Analysis of COVID-19 Ontologies [5.286727853896068]
この研究は、関連する文献の体系的なレビューを伴って、二重段階のアプローチによって実施される。
新型コロナウイルスのオントロジー(CovOs)を24種選択し,検討した。
METHONTOLOGYアプローチは、しばしばアプリケーションベースまたはデータ中心の評価手法と組み合わせて、好ましい設計手法として現れる。
論文 参考訳(メタデータ) (2023-09-15T18:17:01Z) - Research Trends and Applications of Data Augmentation Algorithms [77.34726150561087]
我々は,データ拡張アルゴリズムの適用分野,使用するアルゴリズムの種類,重要な研究動向,時間経過に伴う研究の進展,およびデータ拡張文学における研究ギャップを同定する。
我々は、読者がデータ拡張の可能性を理解し、将来の研究方向を特定し、データ拡張研究の中で質問を開くことを期待する。
論文 参考訳(メタデータ) (2022-07-18T11:38:32Z) - Research Scholar Interest Mining Method based on Load Centrality [15.265191824669555]
本稿では,負荷集中度に基づく研究研究者の関心マイニングアルゴリズムを提案する。
各トピックの地域構造は、ノードの集中度研究モデルの重みを正確に計算するために使用することができる。
本稿では, 負荷率センタに基づく科学的研究協力により, 科学的研究研究者の関心を効果的に抽出することができる。
論文 参考訳(メタデータ) (2022-03-21T04:16:46Z) - A New Neural Search and Insights Platform for Navigating and Organizing
AI Research [56.65232007953311]
我々は、古典的なキーワード検索とニューラル検索を組み合わせた新しいプラットフォームであるAI Research Navigatorを導入し、関連する文献を発見し整理する。
本稿では,システム全体のアーキテクチャの概要と,文書分析,質問応答,検索,分析,専門家検索,レコメンデーションの構成要素について概説する。
論文 参考訳(メタデータ) (2020-10-30T19:12:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。